This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different tu...This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different turbulence models on the efficiency of the numerical model.The numerical model adopts a two-phase flow by solving Unsteady Reynolds-Averaged Navier−Stokes(URANS)equations using the Volume Of Fluid(VOF)method and three differentk-ωturbulence models.Typical environmental conditions from the East China Sea are studied.The wave run-up and the wave loads applied on the monopile are investigated and compared with relevant experimental data as well as with mathematical predictions based on relevant theories.The numerical model is well validated against the experimental data at model scale.The use of different turbulence models results in different predictions on the wave height but less differences on the wave period.The baseline k-ωturbulence model and Shear-Stress Transport(SST)k-ωturbulence model exhibit better performance on the prediction of hydrodynamic load,at a model-scale water depth of 0.42 m,while the laminar model provides better results for large water depths.The SST turbulence model performs better in predicting wave run-up for water depth 0.42 m,while the laminar model and standard k-ωmodel perform better at water depth 0.52 m and 0.62 m,respectively.展开更多
Two series of model tests were performed to observe the dynamic ice loads on conical structures.The variable testing parameters include the water line diameter of the model cone and ice parameters.During small water l...Two series of model tests were performed to observe the dynamic ice loads on conical structures.The variable testing parameters include the water line diameter of the model cone and ice parameters.During small water line diameter tests,two-time breaking is found to be the typical failure of ice on steep conical structure,and also be controlled by other factors,such as ice speed and the cone angle.During big water line diameter tests,the ice sheet failed nonsimultaneously around the cone.Several independent zones of bending were found in the nonsimultaneous failure process of ice.With the increase of the ratio of D/h and the number of independent zones,the total ice force was found being gradually reduced.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it ...Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil展开更多
Concrete structures undergo integral fragmentation under explosion loads. The fragmentation degree and particle-size distribution of concrete blocks under explosion loads must be considered during mining to ensure saf...Concrete structures undergo integral fragmentation under explosion loads. The fragmentation degree and particle-size distribution of concrete blocks under explosion loads must be considered during mining to ensure safety. In this study, the impulse is calculated based on the relationship between overpressure and time, and the impact energy of the explosion wave is obtained based on blast theory. Subsequently, the Mohr-Coulomb shear strength fracture criterion is introduced to determine the ultimate shear stress of the concrete materials, and an empirical model that can effectively calculate the energy consumption of concrete blocks under explosion loads is established. Furthermore, concrete fragments with different particle sizes under explosion scenarios are quantitatively predicted with the principle of energy conservation. Finally, explosion tests with different top standoff distances are conducted, and the concrete fragments after the explosion tests are recovered, sieved, weighed, and counted to obtain experimental data. The effectiveness of the fragment empirical model is verified by comparing the model calculation results with the experimental data. The proposed model can be used as a reference for civil blasting, protective engineering design, and explosion-damage assessment.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52071058 and 51939002)Liaoning Revitalization Talents Program(Grant No,XLYC1807208)the Special Funds for Promoting High Quality Development from Department of Natural Resources of Guangdong Province(Grant No.GDNRC[2020]015).
文摘This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different turbulence models on the efficiency of the numerical model.The numerical model adopts a two-phase flow by solving Unsteady Reynolds-Averaged Navier−Stokes(URANS)equations using the Volume Of Fluid(VOF)method and three differentk-ωturbulence models.Typical environmental conditions from the East China Sea are studied.The wave run-up and the wave loads applied on the monopile are investigated and compared with relevant experimental data as well as with mathematical predictions based on relevant theories.The numerical model is well validated against the experimental data at model scale.The use of different turbulence models results in different predictions on the wave height but less differences on the wave period.The baseline k-ωturbulence model and Shear-Stress Transport(SST)k-ωturbulence model exhibit better performance on the prediction of hydrodynamic load,at a model-scale water depth of 0.42 m,while the laminar model provides better results for large water depths.The SST turbulence model performs better in predicting wave run-up for water depth 0.42 m,while the laminar model and standard k-ωmodel perform better at water depth 0.52 m and 0.62 m,respectively.
基金supported by the National Natural Science Foundation of China(50609015)
文摘Two series of model tests were performed to observe the dynamic ice loads on conical structures.The variable testing parameters include the water line diameter of the model cone and ice parameters.During small water line diameter tests,two-time breaking is found to be the typical failure of ice on steep conical structure,and also be controlled by other factors,such as ice speed and the cone angle.During big water line diameter tests,the ice sheet failed nonsimultaneously around the cone.Several independent zones of bending were found in the nonsimultaneous failure process of ice.With the increase of the ratio of D/h and the number of independent zones,the total ice force was found being gradually reduced.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
基金Foundation item: Project(2013CB036405) supported by the National Basic Research Program of China Project(KZZD-EW-05) supported by the Key Research Program of the Chinese Academy of Sciences
文摘Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil
基金supported by the National Natural Science Foundation of China (Grant Nos. 12032006 and 12372350)。
文摘Concrete structures undergo integral fragmentation under explosion loads. The fragmentation degree and particle-size distribution of concrete blocks under explosion loads must be considered during mining to ensure safety. In this study, the impulse is calculated based on the relationship between overpressure and time, and the impact energy of the explosion wave is obtained based on blast theory. Subsequently, the Mohr-Coulomb shear strength fracture criterion is introduced to determine the ultimate shear stress of the concrete materials, and an empirical model that can effectively calculate the energy consumption of concrete blocks under explosion loads is established. Furthermore, concrete fragments with different particle sizes under explosion scenarios are quantitatively predicted with the principle of energy conservation. Finally, explosion tests with different top standoff distances are conducted, and the concrete fragments after the explosion tests are recovered, sieved, weighed, and counted to obtain experimental data. The effectiveness of the fragment empirical model is verified by comparing the model calculation results with the experimental data. The proposed model can be used as a reference for civil blasting, protective engineering design, and explosion-damage assessment.