3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be effi...3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
The method of building 3D model was discussed at first. Aiming at the feature of mine vacant place,a method to build the 3D vacant place model based on multi TIN (triangular irregular network) was put forward, and the...The method of building 3D model was discussed at first. Aiming at the feature of mine vacant place,a method to build the 3D vacant place model based on multi TIN (triangular irregular network) was put forward, and the data structure and visualization of vacant place were discussed. Then some crucial technologies of realizing function in 3D-GIS were proposed. In addition,the software about special 3D mapping and assaying was introduced.展开更多
In order to lay a foundation for researching the function of Rosa rugose (R. rugosa) RrGlu gene, the RrGlu gene was amplified from the styles of R. rugosa “Tanghong”, a gene expression vector named PBI121-RrGlu was ...In order to lay a foundation for researching the function of Rosa rugose (R. rugosa) RrGlu gene, the RrGlu gene was amplified from the styles of R. rugosa “Tanghong”, a gene expression vector named PBI121-RrGlu was constructed and the vector was introduced into tobacco with the agrobacterium-mediated method. PCR results showed that the RrGlu gene was integrated into the tobacco genome.展开更多
Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of os...Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models.展开更多
China’s Bei Dou-3 global positioning system has been officially initiated construction with four global networking satel ites to be launched by the end of this year,according to the announcement at the Sixth China An...China’s Bei Dou-3 global positioning system has been officially initiated construction with four global networking satel ites to be launched by the end of this year,according to the announcement at the Sixth China Annual Meeting of Satellite Navigation and Location Services in Shenzhen on September 16 and the First Satellite Application International Exposition held.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
The purpose of this paper is to present a general universal formula for <span style="font-family:Verdana;"><i></i></span><i><span><span><i><span style="...The purpose of this paper is to present a general universal formula for <span style="font-family:Verdana;"><i></i></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate survival functions for arbitrary </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> = 2, 3, </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">...</span><span style="font-family:Verdana;">, given all the univariate marginal survival functions. This universal form of </span></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate probability distributions was obtained by means of “dependence functions” named “joiners” in the text. These joiners determine all the involved stochastic dependencies between the underlying random variables. However, in order that the presented formula (the form) represents a legitimate survival function, some necessary and sufficient conditions for the joiners had to be found. Basically, finding those conditions is the main task of this paper. This task was successfully performed for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 2 and the main results for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 3 were formulated as Theorem 1 and Theorem 2 in Section 4. Nevertheless, the hypothetical conditions valid for the general </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 case were also formulated in Section 3 as the (very convincing) Hypothesis. As for the sufficient conditions for both the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> = 3 and</span><i> </i></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 cases, the full generality was not achieved since two restrictions were imposed. Firstly, we limited ourselves to the, defined in the text, “continuous cases” (when the corresponding joint density exists and is continuous), and secondly we consider positive stochastic dependencies only. Nevertheless, the class of the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate distributions which can be constructed is very wide. The presented method of construction by means of joiners can be considered competitive to the </span><span style="font-family:Verdana;"><strong></strong></span></span></span><strong><span><span><b><span style="font-family:Verdana;">copula</span></b><span style="font-family:Verdana;"></span></span></span></strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> methodology. As it is suggested in the paper the possibility of building a common theory of both copulae and joiners is quite possible, and the joiners may play the role of tools within the theory of copulae, and vice versa copulae may, for example, be used for finding proper joiners. Another independent feature of the joiners methodology is the possibility of constructing many new stochastic processes including stationary and Markovian.</span></span></span>展开更多
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall...Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.展开更多
Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because pri...Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because printed buildings are very different from traditional buildings, there are special requirements for printing materials. Based on environmental and cost considerations, the recycled concrete as printing material is a perfect choice. In order to study and develop the construction 3D printing materials, it is necessary to predict the properties of them. As one of the most effective artificial intelligence algorithms, artificial neural network can deal with multi-parameter and nonlinear problems, and it can provide useful reference to predict the performance of recycled concrete for 3D printing. However, since there are many types and parameters for neural network, it is difficult to select the optimal neural network with excellent prediction performance. In this paper, by comparing different types of neural networks and statistically analyzing the distribution of the root-mean-square error (RMSE) and the coefficient of determination (R2) of these neural networks, we can determine the best performance among four neural networks and finally select the suitable one to predict the performance of 3D printing concrete.展开更多
The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achiev...The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achieve using satellite remote sensing.Considering the convenient,facilitative,and flexible characteristics of UAV(unmanned air vehicle)remote sensing tech-nology,this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data.Using professional software,including Context Capture,ENVI,and ArcGIS,a 3D(three-dimensional)campus model,a digital orthophoto map,and multi-spectral remote sensing map drawing are realized,and the geometric accuracy of typical feature selection is evaluated.Based on a quantitative remote sensing model,the campus ecological environment assessment is performed from the perspectives of vegetation and water body.The results presented in this study could be of great significance to the scientific management and sustainable development of regional natural resources.展开更多
This paper takes the right branch main channel Bridge of Huai River Bridge in Huainan as the engineering background, uses the finite element software Midas and the ANSYS to simulate and analyze the jacking constructio...This paper takes the right branch main channel Bridge of Huai River Bridge in Huainan as the engineering background, uses the finite element software Midas and the ANSYS to simulate and analyze the jacking construction of the bridge, and according to the theoretical calculation, the construction monitoring plan is developed, and the stress and deformation of the key section and part of the structure are monitored. Construction monitoring combined with 3 g network and data acquisition module, monitoring data for the real time measurement, the centralized acquisition and wireless transmission, accomplish on-line real-time monitoring of the bridge construction process, effective control of jacking construction and monitoring. The comparison between theoretical analysis and measured results shows that the simulation results are reasonable, and the construction monitoring scheme based on 3G network and data collection can be used as reference.展开更多
3D printing of cementitious material can provide an affordable,sustainable,and optimized approach for the construction of homes,without compromising quality or craftsmanship.While most of the current research and deve...3D printing of cementitious material can provide an affordable,sustainable,and optimized approach for the construction of homes,without compromising quality or craftsmanship.While most of the current research and development efforts in this field are focused on cement-based concrete printing,this paper focuses on the current state-of-the-art literature review of designing and developing a sustainable clay-based mixture design that mainly includes clay,sand,straw,lime,and water.The goal of this paper is to bridge the gap between typical traditional earth construction,specifically cob construction,and emerging 3D printing of cementitious materials.The specific objective of this paper is to offer some possible changes in the typical cob mixture so that it can be used for 3D printing of clay-based mixtures with sufficient flowability,buildability,strength,and open time(i.e.,the time period between printing of one layer and printing of another layer deposited on a layer below).The paper describes typical clay-based mixtures and their traditional process and then specifies the challenges in going from traditional cob construction to advanced computer-controlled robotic 3D printing.展开更多
1. The problems on hybrid network combining TD-SCDMA 1) Hybrid network is imperative in China At present, there are several major wireless networks in China, namely, GSM network of China Mobile, GSM network and CDMA n...1. The problems on hybrid network combining TD-SCDMA 1) Hybrid network is imperative in China At present, there are several major wireless networks in China, namely, GSM network of China Mobile, GSM network and CDMA network of China Unicom, PHS network of China Telecom and China Netcom, and therefore the seamless transition from the existent wireless network to 3G network is an inevitable展开更多
基金supported by NSFC(Nos.41274120,41404085,and 41504084)
文摘3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
文摘The method of building 3D model was discussed at first. Aiming at the feature of mine vacant place,a method to build the 3D vacant place model based on multi TIN (triangular irregular network) was put forward, and the data structure and visualization of vacant place were discussed. Then some crucial technologies of realizing function in 3D-GIS were proposed. In addition,the software about special 3D mapping and assaying was introduced.
文摘In order to lay a foundation for researching the function of Rosa rugose (R. rugosa) RrGlu gene, the RrGlu gene was amplified from the styles of R. rugosa “Tanghong”, a gene expression vector named PBI121-RrGlu was constructed and the vector was introduced into tobacco with the agrobacterium-mediated method. PCR results showed that the RrGlu gene was integrated into the tobacco genome.
基金the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (1R21AR065032 to W.Y.L and J.Z.)the National Science Foundation (DMR 1409779 to W.Y.L and J.Z.)
文摘Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models.
文摘China’s Bei Dou-3 global positioning system has been officially initiated construction with four global networking satel ites to be launched by the end of this year,according to the announcement at the Sixth China Annual Meeting of Satellite Navigation and Location Services in Shenzhen on September 16 and the First Satellite Application International Exposition held.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘The purpose of this paper is to present a general universal formula for <span style="font-family:Verdana;"><i></i></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate survival functions for arbitrary </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> = 2, 3, </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">...</span><span style="font-family:Verdana;">, given all the univariate marginal survival functions. This universal form of </span></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate probability distributions was obtained by means of “dependence functions” named “joiners” in the text. These joiners determine all the involved stochastic dependencies between the underlying random variables. However, in order that the presented formula (the form) represents a legitimate survival function, some necessary and sufficient conditions for the joiners had to be found. Basically, finding those conditions is the main task of this paper. This task was successfully performed for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 2 and the main results for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 3 were formulated as Theorem 1 and Theorem 2 in Section 4. Nevertheless, the hypothetical conditions valid for the general </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 case were also formulated in Section 3 as the (very convincing) Hypothesis. As for the sufficient conditions for both the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> = 3 and</span><i> </i></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 cases, the full generality was not achieved since two restrictions were imposed. Firstly, we limited ourselves to the, defined in the text, “continuous cases” (when the corresponding joint density exists and is continuous), and secondly we consider positive stochastic dependencies only. Nevertheless, the class of the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate distributions which can be constructed is very wide. The presented method of construction by means of joiners can be considered competitive to the </span><span style="font-family:Verdana;"><strong></strong></span></span></span><strong><span><span><b><span style="font-family:Verdana;">copula</span></b><span style="font-family:Verdana;"></span></span></span></strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> methodology. As it is suggested in the paper the possibility of building a common theory of both copulae and joiners is quite possible, and the joiners may play the role of tools within the theory of copulae, and vice versa copulae may, for example, be used for finding proper joiners. Another independent feature of the joiners methodology is the possibility of constructing many new stochastic processes including stationary and Markovian.</span></span></span>
文摘Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.
文摘Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because printed buildings are very different from traditional buildings, there are special requirements for printing materials. Based on environmental and cost considerations, the recycled concrete as printing material is a perfect choice. In order to study and develop the construction 3D printing materials, it is necessary to predict the properties of them. As one of the most effective artificial intelligence algorithms, artificial neural network can deal with multi-parameter and nonlinear problems, and it can provide useful reference to predict the performance of recycled concrete for 3D printing. However, since there are many types and parameters for neural network, it is difficult to select the optimal neural network with excellent prediction performance. In this paper, by comparing different types of neural networks and statistically analyzing the distribution of the root-mean-square error (RMSE) and the coefficient of determination (R2) of these neural networks, we can determine the best performance among four neural networks and finally select the suitable one to predict the performance of 3D printing concrete.
基金supported by the National Natural Science Foundation of China (Grant No.42171311)the Open Fund of State Key Laboratory of Remote Sensing Science (Grant No.OFSLRSS202218)+1 种基金the Key Research and Development Program of the Hainan Province,China (Grant No.ZDYF2021SHFZ105)the Training Program of Excellent Master Thesis of Zhejiang Ocean University.
文摘The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture,spatial res-olution,and multiple parameter categories,which is challenging to achieve using satellite remote sensing.Considering the convenient,facilitative,and flexible characteristics of UAV(unmanned air vehicle)remote sensing tech-nology,this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data.Using professional software,including Context Capture,ENVI,and ArcGIS,a 3D(three-dimensional)campus model,a digital orthophoto map,and multi-spectral remote sensing map drawing are realized,and the geometric accuracy of typical feature selection is evaluated.Based on a quantitative remote sensing model,the campus ecological environment assessment is performed from the perspectives of vegetation and water body.The results presented in this study could be of great significance to the scientific management and sustainable development of regional natural resources.
文摘This paper takes the right branch main channel Bridge of Huai River Bridge in Huainan as the engineering background, uses the finite element software Midas and the ANSYS to simulate and analyze the jacking construction of the bridge, and according to the theoretical calculation, the construction monitoring plan is developed, and the stress and deformation of the key section and part of the structure are monitored. Construction monitoring combined with 3 g network and data acquisition module, monitoring data for the real time measurement, the centralized acquisition and wireless transmission, accomplish on-line real-time monitoring of the bridge construction process, effective control of jacking construction and monitoring. The comparison between theoretical analysis and measured results shows that the simulation results are reasonable, and the construction monitoring scheme based on 3G network and data collection can be used as reference.
文摘3D printing of cementitious material can provide an affordable,sustainable,and optimized approach for the construction of homes,without compromising quality or craftsmanship.While most of the current research and development efforts in this field are focused on cement-based concrete printing,this paper focuses on the current state-of-the-art literature review of designing and developing a sustainable clay-based mixture design that mainly includes clay,sand,straw,lime,and water.The goal of this paper is to bridge the gap between typical traditional earth construction,specifically cob construction,and emerging 3D printing of cementitious materials.The specific objective of this paper is to offer some possible changes in the typical cob mixture so that it can be used for 3D printing of clay-based mixtures with sufficient flowability,buildability,strength,and open time(i.e.,the time period between printing of one layer and printing of another layer deposited on a layer below).The paper describes typical clay-based mixtures and their traditional process and then specifies the challenges in going from traditional cob construction to advanced computer-controlled robotic 3D printing.
文摘1. The problems on hybrid network combining TD-SCDMA 1) Hybrid network is imperative in China At present, there are several major wireless networks in China, namely, GSM network of China Mobile, GSM network and CDMA network of China Unicom, PHS network of China Telecom and China Netcom, and therefore the seamless transition from the existent wireless network to 3G network is an inevitable