This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requ...This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation.展开更多
A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in s...A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in series for a centrifugal chiller in the paper. A finite-time thermodynamics method is used to set up the time series simulation model. As a result, an upper bound of recoverable condensation heat for the compound condensing process is obtained which is in good agreement with experimental result. And the result is valuable and useful to optimization design of condensing heat recovery.展开更多
Objective:To observe the application effects of anesthesia recovery nursing with heat preservation measures in patients undergoing general anesthesia surgery.Methods:300 cases of general anesthesia surgery patients in...Objective:To observe the application effects of anesthesia recovery nursing with heat preservation measures in patients undergoing general anesthesia surgery.Methods:300 cases of general anesthesia surgery patients in our hospital from March 2023 to February 2024 were selected and divided into the control group and the observation group according to the random number table method,each with 150 cases.The control group adopted conventional care,while the observation group was given anesthesia recovery care and heat preservation measures on the basis of conventional care.The wake-up time,extubation time,hospitalization time,and the incidence of adverse reactions were compared between the two groups and statistically analyzed.Results:The wake-up time of patients in the control group was 9.71±1.20 hours,and that of the observation group was 6.51±1.02 hours,with statistically significant differences(P<0.05);the extubation times of patients in the observation group and the control group after awakening were 8.52±0.41 min and 10.42±1.12 min,respectively,with statistically significant differences(P<0.05)The hospital stay after the operation in the observation group and the control group was 32.91±4.71 days and 37.24±3.34 days respectively,and the difference was statistically significant(P<0.05),and the incidence rate of adverse reactions after extubation in the observation group(3.33%)was significantly lower than that in the control group(10.00%)(P<0.05).Conclusion:In general anesthesia surgery patients,the implementation of anesthesia recovery nursing with heat preservation measures can significantly improve the physical condition of patients,effectively shorten the duration of surgery and patients’wake-up time,and improve their quality of life,which is worthy of clinical promotion and application.展开更多
During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There ...During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.展开更多
The "soft canning" heat preservation technique is invented by Baoshan Iron & Steel Co., Ltd. (Hereafter referred to Baosteel), using the flexible insulation material which can be stuck on the surface of the heate...The "soft canning" heat preservation technique is invented by Baoshan Iron & Steel Co., Ltd. (Hereafter referred to Baosteel), using the flexible insulation material which can be stuck on the surface of the heated ingot or billet in the superalloy thermal process. This adhesive insulation material can reduce the temperature drop of the ingot or billet during the transferring or hot working process, and can deform with the billet without dropping. The surface temperature drop can be effectively reduced, so the products can be obtained a good surface quality and the structural uniformity can be improved. The technique is applied to hard-wrought superalloy forging of cogging, superalloy rods finished forging fire and superalloy hot die forging processing,and good results have been achieved.展开更多
A nonlinear finite element model of vacuum heat treatment process was developed. In this model, influence of many factors, such as nonlinear heat radiation, temperature-dependent thermal physical properties of materia...A nonlinear finite element model of vacuum heat treatment process was developed. In this model, influence of many factors, such as nonlinear heat radiation, temperature-dependent thermal physical properties of material are considered. The temperature field of GH4169 alloy workpiece during vacuum heat treatment process was calculated using finite element software MSC.Marc, and the thermal hysteresis time of the workpiece was predicted. An experiment of vacuum heat treatment of GH4169 superalloy workpiece was carried out to verify the calculation. The experimental results of temperature profile agree well with the simulated results. This work lays a theoretical foundation for optimizing technical parameter of vacuum heat treatment process.展开更多
Objective: To determine if insemination at standing heat results in a similar or higher pregnancy rate compared with fixed time artificial insemination, and to study some factors affecting the pregnancy rate. Methods:...Objective: To determine if insemination at standing heat results in a similar or higher pregnancy rate compared with fixed time artificial insemination, and to study some factors affecting the pregnancy rate. Methods: A total of 8944 inseminations were included in this study, from which 6823 inseminations were done in Holstein cows and 2121 inseminations were performed in Simmental cows. All cows were subjected to a Presynch-Ovsynch protocol. Cows detected in estrus (n=7424) were artificially inseminated, whereas cows not observed in estrus (n=1520) were submitted to fixed time artificial insemination. Results: The overall pregnancy rate of cows inseminated on the basis of the detected standing heat was comparable to that recorded for cows receiving fixed time artificial insemination. A higher pregnancy rate was recorded for cows during cold months than that recorded during hot months (P=0.000). A higher pregnancy rate was recorded for Simmental compared with that recorded for Holstein cows (P=0.001). Regarding parity, significant differences in the pregnancy rate were detected between primiparous and multiparous cows (P=0.040). In addition, artificial insemination technicians had no sigificant effect on pregnancy rate (P>0.05). Meanwhile, the used artificial insemination sires significantly (P=0.000) impacted the pregnancy rate. Conclusions: Insemination of cows detected in standing heat prior to predetermined fixed time results in similar pregnancy outcome and decreases days to the first service compared with insemination at the scheduled fixed time at the end of the Presynch-Ovsynch synchronization program. The overall pregnancy outcome is not affected by the breeding program, but it is highly impacted by cow's breed, parity, artificial insemination sire and breeding season.展开更多
This article establishes the precise asymptotics Eu^m(t, x)(t → ∞ or m → ∞) for the stochastic heat equation ?u/?t(t, x) =1/2?u(t, x) + u(t, x)(t, x)?W/?t(t, x) with the time-derivative Gaussian noise W?/?t(t, x) ...This article establishes the precise asymptotics Eu^m(t, x)(t → ∞ or m → ∞) for the stochastic heat equation ?u/?t(t, x) =1/2?u(t, x) + u(t, x)(t, x)?W/?t(t, x) with the time-derivative Gaussian noise W?/?t(t, x) that is fractional in time and homogeneous in space.展开更多
A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions...A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy(E) and pre-exponential constant(A) of the exothermic decomposition stage of GDN were 118.75 kJ/mol and 10^10.86 s^-1, respectively. The critical temperature of the thermal explosion(Tb) of GDN was 164.09 ℃. The specific heat capacity of GDN was determined with the Micro-DSC method and the theoretical calculation method, and the standard molar specific heat capacity was 234.76 J·mol^-1·K^-1 at 298.15 K. The adiabatic time-to-explosion of GDN was also calculated to be a certain value between 404.80 and 454.95 s.展开更多
It is proved that the treatment with white mulch and black thin films per- formed the best in terms of heat preservation in cultivation of strawberry with shelves. In winter, drip irrigation performed significantly in...It is proved that the treatment with white mulch and black thin films per- formed the best in terms of heat preservation in cultivation of strawberry with shelves. In winter, drip irrigation performed significantly in transporting hot water through solar energy. The combination of the two methods resolved the issue of heat preservation difficulty and guaranteed growth of strawberry in winter.展开更多
The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the ...The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.展开更多
In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal...In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
AIM: To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell mar...AIM: To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell markers. METHODS: Thirty limbal rims were split into 4 parts and stored in corneal preservation medium at 4 degrees C for 0, 1, 4, or 7 days. The limbal stem cell and mitotic markers P63, CK19, proliferating cell nuclear antigen (PCNA), and Ki67 were determined by immunohistochemical staining. The proliferative potential of limbal epithelial cells was assessed by cell viability, the ability of generating stratified epithelium, and colony forming assay. RESULTS: The stored tissues maintained limbal stratified structure to 7 days and exhibited comparable expression level of stem cell and mitotic markers. The proportion of viable cells decreased with the prolonged preservation time, while colony forming efficiency decreased from the 1st day and disappeared at the 4th day. When inoculated on amniotic membrane, the cells preserved for 1 day formed a stratified epithelium, while the cells from 4 days' preservation formed a discontinuous layer. CONCLUSION: The colony forming efficiency of limbal epithelial stem/progenitor cells decreased rapidly with the increasing preservation time, while the expression level of markers and capacity of forming epithelial monolayer on amniotic membrane decreased gradually. The limbal epithelial stem cells lost their function earlier than the lost expression level of stem cell markers. This may help us to better choose the appropriate preservation grafts for future limbal stem cell transplantation.展开更多
In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isotherma...In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.展开更多
[Objectives] The aim was to study the effects of ovarian preservation time on in vitro fertilization of oocytes from slaughtered sheep. [Methods] The collected ovaries were randomly and evenly divided into four groups...[Objectives] The aim was to study the effects of ovarian preservation time on in vitro fertilization of oocytes from slaughtered sheep. [Methods] The collected ovaries were randomly and evenly divided into four groups. They were preserved in physiological saline containing penicillin( 100 IU/ml) and streptomycin( 100 μg/ml) at 15-20 ℃ for 0( Control),6,12 and 18 h,respectively. Then,the oocytes were subjected to in vitro fertilization. [Results]The maturation rates,cleavage rates and blastocyst rates of the oocytes preserved for 6 and 12 h showed no significant differences compared with those of the oocytes preserved for0 h( 72. 03%,70. 87% vs. 73. 68%; 74. 12%,72. 60% vs. 74. 49%; 22. 22%,20. 75% vs. 23. 29%)( P 〉 0. 05). There were also no significant differences in maturation rate,cleavage rate or blastocyst rate between the oocytes preserved for 18 and 0 h( P 〉 0. 05). [Conclusions] Within a certain rage( 0-18 h),storage time of ovary at 15-20 ℃ does not affect the continued development of oocytes from slaughtered sheep.展开更多
We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggeste...We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from int...We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from intense laser driven high harmonic generation in gas phase. The time preserving for the selected harmonic radiation is achieved by a Czerny-Turner type monochromator designed with a conical diffraction grating mount for minimizing the time broadening caused by grating diffraction and keeping a relatively high diffraction efficiency. Our measurement shows that the photon flux of the 23-order harmonic(H23) centered at 35.7 eV is 1×10~9 photons/s approximately with a resolving power E/?E ≈ 36.This source provides an ultrashort tunable monochromatic XUV beam for ultrafast studies of electronic and structural dynamics in a large variety of matters.展开更多
In order to control the heat saturation time, the temperature field of the regenerators of high temperature air combustion (HTAC) technology after reheating furnace was studied. A one-dimensional unsteady mathematic...In order to control the heat saturation time, the temperature field of the regenerators of high temperature air combustion (HTAC) technology after reheating furnace was studied. A one-dimensional unsteady mathematical model was established and discretized through finite difference method. The relationship between the heat saturation time and some factors was determined through the calculation of a program developed by language C. The heat saturation time decreases with the increase of heat convection coefficient, however, the increase of heat capacity, density and radius of regenerator all increase the heat saturation time approximately linearly.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province,Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform (No.2020B1111010001).
文摘This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation.
文摘A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in series for a centrifugal chiller in the paper. A finite-time thermodynamics method is used to set up the time series simulation model. As a result, an upper bound of recoverable condensation heat for the compound condensing process is obtained which is in good agreement with experimental result. And the result is valuable and useful to optimization design of condensing heat recovery.
文摘Objective:To observe the application effects of anesthesia recovery nursing with heat preservation measures in patients undergoing general anesthesia surgery.Methods:300 cases of general anesthesia surgery patients in our hospital from March 2023 to February 2024 were selected and divided into the control group and the observation group according to the random number table method,each with 150 cases.The control group adopted conventional care,while the observation group was given anesthesia recovery care and heat preservation measures on the basis of conventional care.The wake-up time,extubation time,hospitalization time,and the incidence of adverse reactions were compared between the two groups and statistically analyzed.Results:The wake-up time of patients in the control group was 9.71±1.20 hours,and that of the observation group was 6.51±1.02 hours,with statistically significant differences(P<0.05);the extubation times of patients in the observation group and the control group after awakening were 8.52±0.41 min and 10.42±1.12 min,respectively,with statistically significant differences(P<0.05)The hospital stay after the operation in the observation group and the control group was 32.91±4.71 days and 37.24±3.34 days respectively,and the difference was statistically significant(P<0.05),and the incidence rate of adverse reactions after extubation in the observation group(3.33%)was significantly lower than that in the control group(10.00%)(P<0.05).Conclusion:In general anesthesia surgery patients,the implementation of anesthesia recovery nursing with heat preservation measures can significantly improve the physical condition of patients,effectively shorten the duration of surgery and patients’wake-up time,and improve their quality of life,which is worthy of clinical promotion and application.
基金supported by the National Natural Science Foundation of China (No.51974334)Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ107)local efficient reform and development funds for personnel training projects supported by the central government,Heilongjiang Postdoctoral Scientific Research Fund (LBH-Q21012)。
文摘During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.
文摘The "soft canning" heat preservation technique is invented by Baoshan Iron & Steel Co., Ltd. (Hereafter referred to Baosteel), using the flexible insulation material which can be stuck on the surface of the heated ingot or billet in the superalloy thermal process. This adhesive insulation material can reduce the temperature drop of the ingot or billet during the transferring or hot working process, and can deform with the billet without dropping. The surface temperature drop can be effectively reduced, so the products can be obtained a good surface quality and the structural uniformity can be improved. The technique is applied to hard-wrought superalloy forging of cogging, superalloy rods finished forging fire and superalloy hot die forging processing,and good results have been achieved.
文摘A nonlinear finite element model of vacuum heat treatment process was developed. In this model, influence of many factors, such as nonlinear heat radiation, temperature-dependent thermal physical properties of material are considered. The temperature field of GH4169 alloy workpiece during vacuum heat treatment process was calculated using finite element software MSC.Marc, and the thermal hysteresis time of the workpiece was predicted. An experiment of vacuum heat treatment of GH4169 superalloy workpiece was carried out to verify the calculation. The experimental results of temperature profile agree well with the simulated results. This work lays a theoretical foundation for optimizing technical parameter of vacuum heat treatment process.
文摘Objective: To determine if insemination at standing heat results in a similar or higher pregnancy rate compared with fixed time artificial insemination, and to study some factors affecting the pregnancy rate. Methods: A total of 8944 inseminations were included in this study, from which 6823 inseminations were done in Holstein cows and 2121 inseminations were performed in Simmental cows. All cows were subjected to a Presynch-Ovsynch protocol. Cows detected in estrus (n=7424) were artificially inseminated, whereas cows not observed in estrus (n=1520) were submitted to fixed time artificial insemination. Results: The overall pregnancy rate of cows inseminated on the basis of the detected standing heat was comparable to that recorded for cows receiving fixed time artificial insemination. A higher pregnancy rate was recorded for cows during cold months than that recorded during hot months (P=0.000). A higher pregnancy rate was recorded for Simmental compared with that recorded for Holstein cows (P=0.001). Regarding parity, significant differences in the pregnancy rate were detected between primiparous and multiparous cows (P=0.040). In addition, artificial insemination technicians had no sigificant effect on pregnancy rate (P>0.05). Meanwhile, the used artificial insemination sires significantly (P=0.000) impacted the pregnancy rate. Conclusions: Insemination of cows detected in standing heat prior to predetermined fixed time results in similar pregnancy outcome and decreases days to the first service compared with insemination at the scheduled fixed time at the end of the Presynch-Ovsynch synchronization program. The overall pregnancy outcome is not affected by the breeding program, but it is highly impacted by cow's breed, parity, artificial insemination sire and breeding season.
基金Research partially supported by the “1000 Talents Plan” from Jilin University,Jilin Province and Chinese Governmentby the Simons Foundation(244767)
文摘This article establishes the precise asymptotics Eu^m(t, x)(t → ∞ or m → ∞) for the stochastic heat equation ?u/?t(t, x) =1/2?u(t, x) + u(t, x)(t, x)?W/?t(t, x) with the time-derivative Gaussian noise W?/?t(t, x) that is fractional in time and homogeneous in space.
基金Supported by the National Natural Science Foundation of China(No.20803058)Xi’an Scientific and Technical Plan Foundation, China(No.YF07106).
文摘A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy(E) and pre-exponential constant(A) of the exothermic decomposition stage of GDN were 118.75 kJ/mol and 10^10.86 s^-1, respectively. The critical temperature of the thermal explosion(Tb) of GDN was 164.09 ℃. The specific heat capacity of GDN was determined with the Micro-DSC method and the theoretical calculation method, and the standard molar specific heat capacity was 234.76 J·mol^-1·K^-1 at 298.15 K. The adiabatic time-to-explosion of GDN was also calculated to be a certain value between 404.80 and 454.95 s.
基金Supported by Zhenjiang Science&Technology Pillar Program(NY2013001)~~
文摘It is proved that the treatment with white mulch and black thin films per- formed the best in terms of heat preservation in cultivation of strawberry with shelves. In winter, drip irrigation performed significantly in transporting hot water through solar energy. The combination of the two methods resolved the issue of heat preservation difficulty and guaranteed growth of strawberry in winter.
基金The Advance Research Projects of Southeast Universityfor the National Natural Science Foundation of China(No.XJ0701262)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04,2008BAJ12B05,2006BAJ03A04)
文摘The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.
基金Project(51076062) supported by the National Natural Science Foundation of China
文摘In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
基金National Natural Science Foundation of China (No.81170816)Specialized Research Fund for the Doctoral Program of Higher Education (No.20113706110004)Qingjun Zhou is partially supported by the TaishanScholar Program of Jinan City, China (No.20081148)
文摘AIM: To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell markers. METHODS: Thirty limbal rims were split into 4 parts and stored in corneal preservation medium at 4 degrees C for 0, 1, 4, or 7 days. The limbal stem cell and mitotic markers P63, CK19, proliferating cell nuclear antigen (PCNA), and Ki67 were determined by immunohistochemical staining. The proliferative potential of limbal epithelial cells was assessed by cell viability, the ability of generating stratified epithelium, and colony forming assay. RESULTS: The stored tissues maintained limbal stratified structure to 7 days and exhibited comparable expression level of stem cell and mitotic markers. The proportion of viable cells decreased with the prolonged preservation time, while colony forming efficiency decreased from the 1st day and disappeared at the 4th day. When inoculated on amniotic membrane, the cells preserved for 1 day formed a stratified epithelium, while the cells from 4 days' preservation formed a discontinuous layer. CONCLUSION: The colony forming efficiency of limbal epithelial stem/progenitor cells decreased rapidly with the increasing preservation time, while the expression level of markers and capacity of forming epithelial monolayer on amniotic membrane decreased gradually. The limbal epithelial stem cells lost their function earlier than the lost expression level of stem cell markers. This may help us to better choose the appropriate preservation grafts for future limbal stem cell transplantation.
基金Funded by Guangxi Science Foundation(No. 0639006)
文摘In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.
基金Supported by Science and Technology Development Plan Project Jilin Province(20170204037NY)
文摘[Objectives] The aim was to study the effects of ovarian preservation time on in vitro fertilization of oocytes from slaughtered sheep. [Methods] The collected ovaries were randomly and evenly divided into four groups. They were preserved in physiological saline containing penicillin( 100 IU/ml) and streptomycin( 100 μg/ml) at 15-20 ℃ for 0( Control),6,12 and 18 h,respectively. Then,the oocytes were subjected to in vitro fertilization. [Results]The maturation rates,cleavage rates and blastocyst rates of the oocytes preserved for 6 and 12 h showed no significant differences compared with those of the oocytes preserved for0 h( 72. 03%,70. 87% vs. 73. 68%; 74. 12%,72. 60% vs. 74. 49%; 22. 22%,20. 75% vs. 23. 29%)( P 〉 0. 05). There were also no significant differences in maturation rate,cleavage rate or blastocyst rate between the oocytes preserved for 18 and 0 h( P 〉 0. 05). [Conclusions] Within a certain rage( 0-18 h),storage time of ovary at 15-20 ℃ does not affect the continued development of oocytes from slaughtered sheep.
基金Funded by the National Natural Science Foundation of China(Nos.51175210 and 51175211)
文摘We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11627807,11127403,and 11474130)the National Basic Research Program of China(Grant No.2013CB922200)the Natural Science Foundation of Jilin Province of China(Grant No.20160101332JC)
文摘We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from intense laser driven high harmonic generation in gas phase. The time preserving for the selected harmonic radiation is achieved by a Czerny-Turner type monochromator designed with a conical diffraction grating mount for minimizing the time broadening caused by grating diffraction and keeping a relatively high diffraction efficiency. Our measurement shows that the photon flux of the 23-order harmonic(H23) centered at 35.7 eV is 1×10~9 photons/s approximately with a resolving power E/?E ≈ 36.This source provides an ultrashort tunable monochromatic XUV beam for ultrafast studies of electronic and structural dynamics in a large variety of matters.
文摘In order to control the heat saturation time, the temperature field of the regenerators of high temperature air combustion (HTAC) technology after reheating furnace was studied. A one-dimensional unsteady mathematical model was established and discretized through finite difference method. The relationship between the heat saturation time and some factors was determined through the calculation of a program developed by language C. The heat saturation time decreases with the increase of heat convection coefficient, however, the increase of heat capacity, density and radius of regenerator all increase the heat saturation time approximately linearly.