In the case of increasing fragmentation of wetlands, the study of the relationship between wetland landscape characteristics and total nitrogen(TN) in water is of great significance to reveal the mechanism of wetland ...In the case of increasing fragmentation of wetlands, the study of the relationship between wetland landscape characteristics and total nitrogen(TN) in water is of great significance to reveal the mechanism of wetland water purification. Taking the Naoli River(NR) wetlands in Northeast China as the research object, 10 uniformly distributed sampling sites in the study area were sampled in August 2015 to test the TN concentration and interpret the images of NR wetlands in the same period. Taking the sampling site as the control point, the whole wetlands were divided into 10 regions, and the landscape index of each region was extracted. In order to reveal whether the landscape characteristics are related to the TN concentration in the wetlands water body, the landscape index and the TN concentration in the control point water body were analyzed by correlation analysis, step-by-step elimination analysis and path analysis to reveal whether the landscape characteristics are related to the TN concentration under wetlands receiving agricultural drainages. The results showed that the correlation coefficients between four area indexes or eight shape indexes and TN concentration did not reach a significant correlation level(P > 0.05), indicating that TN removal was not only determined by a single landscape index. The path coefficient of edge density(ED) index is –0.41, indicating that wetland patch connectivity is the primary factor of TN removal, and there is no relationship between the larger patch area and the higher TN removal. The removal of TN in wetlands is restricted by the synergistic effect of landscape area and shape characteristics.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
Land use and cover change(LUCC) is an important indicator of the human-earth system under climate/environmental change,which also serves as a key impact factor of carbon balance,and a major source/sink of soil carbon ...Land use and cover change(LUCC) is an important indicator of the human-earth system under climate/environmental change,which also serves as a key impact factor of carbon balance,and a major source/sink of soil carbon cycles.The Heihe River Basin(HRB) is known as a typical ecologically fragile area in the arid/semi-arid regions of northwestern China,which makes it more sensitive to the LUCC.However,its sensitivity varies in a broad range of controlling factors,such as soil layers,LUCCs and calculation methods(e.g.the fixed depth method,FD,and the equivalent mass method,ESM).In this study,we performed a meta-analysis to assess the response of soil organic carbon(SOC) and total nitrogen(TN) storage to the LUCC as well as method bias based on 383 sets of SOC data and 148 sets of TN data from the HRB.We first evaluated the calculation methods and found that based on the FD method,the LUCC caused SOC and TN storage to decrease by 17.39% and 14.27%,respectively;while the losses estimated using the ESM method were 19.31% and 18.52%,respectively.The deviations between two methods were mainly due to the fact that the FD method ignores the heterogeneity of soil bulk density(BD),which may underestimate the results subsequently.We then analyzed the response of SOC and TN storage to various types of the LUCC.In particular,when woodland and grassland were converted into cultivated land or other land types,SOC and TN suffered from heavy losses,while other LUCCs had minor influences.Finally,we showed that increasing the depth of the soil layers would reduce the losses of SOC and TN storage.In summary,we identified a series of controlling factors(e.g.soil layer,the LUCC and calculation method) to evaluate the impact of the LUCC on SOC and TN storage in the HRB,which should be considered in future research.展开更多
Soil organic carbon (SOC) and total nitrogen (TN) contents as well as their relationships with site characteristics are of profound importance in assessing current regional, continental and global soil C and N sto...Soil organic carbon (SOC) and total nitrogen (TN) contents as well as their relationships with site characteristics are of profound importance in assessing current regional, continental and global soil C and N stocks and potentials for C sequestration and N conservation to offset anthropogenic emissions of greenhouse gases. This study investigated contents and distribution of SOC and TN under different land uses, and the quantitative relationships between SOC or TN and site characteristics in the Upstream Watershed of Miyun Reservoir, North China. Overall, both SOC and TN contents in natural secondary forests and grasslands were much higher than in plantations and croplands. Land use alone explained 37.2% and 38.4% of variations in SOC and TN contents, respectively. The optimal models for SOC and TN, achieved by multiple regression analysis combined with principal component analysis (PCA) to remove the multicollinearity among site variables, showed that elevation, slope, soil clay and water contents were the most significant factors controlling SOC and TN contents, jointly explaining 70.3% of SOC and 67.1% of TN contents variability. Only does additional 1.9% and 3% increase in the interpretations of SOC and TN contents variability respectively when land use was added to regressions, probably due to environment factors determine land use. Therefore, environmental variables were more important for SOC and TN variability than land use in the study area, and should be taken into consideration in properly evaluating effects of future land use changes on SOC and TN on a regional scale.展开更多
【目的】系统评价益气养阴法联合西药治疗肾病综合征的有效性及安全性。【方法】检索中国知网(CNKI)、中国生物医学文献数据库(CBM)、万方(Wangfang)、维普(VIP)、PubMed、Web of Science、Cochrane Library、Embase等国内外主要文献数...【目的】系统评价益气养阴法联合西药治疗肾病综合征的有效性及安全性。【方法】检索中国知网(CNKI)、中国生物医学文献数据库(CBM)、万方(Wangfang)、维普(VIP)、PubMed、Web of Science、Cochrane Library、Embase等国内外主要文献数据库,筛选其中有关益气养阴法联合西药(试验组)对比单纯西药(对照组)治疗肾病综合征的临床随机对照试验(RCTs),采用Cochrane手册中的偏倚风险工具进行文献的质量评价,运用RevMan 5.3软件进行Meta分析。【结果】共纳入18个RCTs,包含1334例患者。Meta分析结果显示,益气养阴法联合西药在提高临床有效率(RR=1.24,95%CI[1.16,1.32],P<0.00001),改善24 h尿蛋白定量(24hUPRO)(MD=-0.92,95%CI[-1.09,-0.75],P<0.00001)、血清白蛋白(ALB)(MD=7.06,95%CI[4.73,9.39],P<0.00001)、尿素氮(BUN)(MD=-1.57,95%CI[-2.01,-1.13],P<0.00001)、血肌酐(SCr)(MD=-12.23,95%CI[-16.58,-7.88],P<0.00001)、总胆固醇(TC)(MD=-1.06,95%CI[-1.69,-0.43],P=0.0009)、甘油三酯(TG)(MD=-0.58,95%CI[-0.94,-0.21],P=0.002)水平,以及降低不良反应发生率(RR=0.50,95%CI[0.40,0.64],P<0.00001)方面优于单纯西药治疗。【结论】益气养阴法联合西药治疗肾病综合征在提高临床疗效及改善24hUPRO、ALB、BUN、SCr、TC、TG方面优于单纯西药治疗,且能降低激素产生的不良反应。因纳入文献较少,文献质量较低,潜在疗效需更多的高质量研究进行验证。展开更多
基金Under the auspices of National Natural Science Foundations of China(No.41620104005,31500307,41601263,41771120)Technology Development Program of Jilin Province(No.20180101082JC,20180520085JC,20190201256JC,20190201018JC)+1 种基金Natural Science Foundation of Changchun Normal University(No.2016-009)Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.IGA-135-05)
文摘In the case of increasing fragmentation of wetlands, the study of the relationship between wetland landscape characteristics and total nitrogen(TN) in water is of great significance to reveal the mechanism of wetland water purification. Taking the Naoli River(NR) wetlands in Northeast China as the research object, 10 uniformly distributed sampling sites in the study area were sampled in August 2015 to test the TN concentration and interpret the images of NR wetlands in the same period. Taking the sampling site as the control point, the whole wetlands were divided into 10 regions, and the landscape index of each region was extracted. In order to reveal whether the landscape characteristics are related to the TN concentration in the wetlands water body, the landscape index and the TN concentration in the control point water body were analyzed by correlation analysis, step-by-step elimination analysis and path analysis to reveal whether the landscape characteristics are related to the TN concentration under wetlands receiving agricultural drainages. The results showed that the correlation coefficients between four area indexes or eight shape indexes and TN concentration did not reach a significant correlation level(P > 0.05), indicating that TN removal was not only determined by a single landscape index. The path coefficient of edge density(ED) index is –0.41, indicating that wetland patch connectivity is the primary factor of TN removal, and there is no relationship between the larger patch area and the higher TN removal. The removal of TN in wetlands is restricted by the synergistic effect of landscape area and shape characteristics.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
基金The Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA20100104
文摘Land use and cover change(LUCC) is an important indicator of the human-earth system under climate/environmental change,which also serves as a key impact factor of carbon balance,and a major source/sink of soil carbon cycles.The Heihe River Basin(HRB) is known as a typical ecologically fragile area in the arid/semi-arid regions of northwestern China,which makes it more sensitive to the LUCC.However,its sensitivity varies in a broad range of controlling factors,such as soil layers,LUCCs and calculation methods(e.g.the fixed depth method,FD,and the equivalent mass method,ESM).In this study,we performed a meta-analysis to assess the response of soil organic carbon(SOC) and total nitrogen(TN) storage to the LUCC as well as method bias based on 383 sets of SOC data and 148 sets of TN data from the HRB.We first evaluated the calculation methods and found that based on the FD method,the LUCC caused SOC and TN storage to decrease by 17.39% and 14.27%,respectively;while the losses estimated using the ESM method were 19.31% and 18.52%,respectively.The deviations between two methods were mainly due to the fact that the FD method ignores the heterogeneity of soil bulk density(BD),which may underestimate the results subsequently.We then analyzed the response of SOC and TN storage to various types of the LUCC.In particular,when woodland and grassland were converted into cultivated land or other land types,SOC and TN suffered from heavy losses,while other LUCCs had minor influences.Finally,we showed that increasing the depth of the soil layers would reduce the losses of SOC and TN storage.In summary,we identified a series of controlling factors(e.g.soil layer,the LUCC and calculation method) to evaluate the impact of the LUCC on SOC and TN storage in the HRB,which should be considered in future research.
基金supported by the Chinese Academy of Sciences for Strategic Priority Research Program (No.XDA05050602)the National Basic Research Program(973) of China (No. 2006CB403402)the National Natural Science Foundation of China (No. 40901265)
文摘Soil organic carbon (SOC) and total nitrogen (TN) contents as well as their relationships with site characteristics are of profound importance in assessing current regional, continental and global soil C and N stocks and potentials for C sequestration and N conservation to offset anthropogenic emissions of greenhouse gases. This study investigated contents and distribution of SOC and TN under different land uses, and the quantitative relationships between SOC or TN and site characteristics in the Upstream Watershed of Miyun Reservoir, North China. Overall, both SOC and TN contents in natural secondary forests and grasslands were much higher than in plantations and croplands. Land use alone explained 37.2% and 38.4% of variations in SOC and TN contents, respectively. The optimal models for SOC and TN, achieved by multiple regression analysis combined with principal component analysis (PCA) to remove the multicollinearity among site variables, showed that elevation, slope, soil clay and water contents were the most significant factors controlling SOC and TN contents, jointly explaining 70.3% of SOC and 67.1% of TN contents variability. Only does additional 1.9% and 3% increase in the interpretations of SOC and TN contents variability respectively when land use was added to regressions, probably due to environment factors determine land use. Therefore, environmental variables were more important for SOC and TN variability than land use in the study area, and should be taken into consideration in properly evaluating effects of future land use changes on SOC and TN on a regional scale.