This paper analyzes the present development situations of the real estate industry, puts forwards the low carbon development strategies based on the project life cycle for the real estate enterprises, and points out t...This paper analyzes the present development situations of the real estate industry, puts forwards the low carbon development strategies based on the project life cycle for the real estate enterprises, and points out the corresponding assistant suggestions according to the predicament in the implementation of low carbon strategy. The purpose is to provide a theoretical reference for low carbon development of the real estate enterprises and the healthy and sustainable development of the real estate industry.展开更多
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe...The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results.展开更多
The effective implementation of the project management plays a core roll in avoiding bad project use effect and waste of funds, caused by asset management planning and design errors or equipment selection errors;meanw...The effective implementation of the project management plays a core roll in avoiding bad project use effect and waste of funds, caused by asset management planning and design errors or equipment selection errors;meanwhile, it can effectively improve the operational efficiency of enterprise assets, lower operating costs and save resources. In June 1974, A. Gordon published a paper “3L Economics Concept” as the starting point, on the “Building and Quantity Surveying”, which is organized by the Royal Institution of Chartered Surveyors. In this paper, a review of domestic and foreign research, from 1974 to 2015, on the total life cycle management progress will be given, and then a comment on it will be established. After detailed investigation and analysis of related materials, we can draw a conclusion: the study of the oil and gas development project lifecycle management is just beginning now. Hence, building the whole life cycle planning index system in line with the characteristics of oil and gas development project is very necessary.展开更多
The anaerobic digestion(AD)disposal of stover and cattle manure is of great significance to the development of low-carbon economy and green energy in China,but it will also have an impact on the environment,and the de...The anaerobic digestion(AD)disposal of stover and cattle manure is of great significance to the development of low-carbon economy and green energy in China,but it will also have an impact on the environment,and the degree of influence is different for various raw materials.In this study,life cycle assessment(LCA)methods were applied to analyze and compare the impact of corn stovers biogas projects(CSBP)and dairy manure biogas projects(DMBP)on the environment during the whole operation stage.The results of inventory analysis were evaluated by ReCiPe2016 Hierarchy(H)mid-point(problem-oriented)and end-point(destruction-oriented)method,respectively.The results showed that the net energy efficiency of CSBP was higher(763.903 kW·h/FU)and the greenhouse gas(GHG)emission reduction of DMBP was more(5541.418 kg CO_(2)-eq/FU).The anaerobic digestion(AD)units have the greatest environmental impacts,and human carcinogenic toxicity is the largest environmental impact category(1.16-1.43 PE).The key to reducing environmental impact is reducing the input of chemical substances and the waste of electric energy.Both CSBP and DMBP have a favorable impact on ecosystem quality and resources,and CSBP is more beneficial to the environment(-10.297 Pt).Co-digestion is an important measure to reduce the environmental damage from biogas projects.These research results provide theoretical support for the selection of raw materials for large-scale biogas projects in China,provide technical basis for reducing the impact of actual operation on the environment,and promote the resource utilization of agricultural waste and carbon dioxide emission reduction and sequestration.展开更多
The risk assessment right from the source of emissions can effectively guide the pollution control. A model was established, consisting of four part: source estimation, environmental fate analysis, exposure analysis ...The risk assessment right from the source of emissions can effectively guide the pollution control. A model was established, consisting of four part: source estimation, environmental fate analysis, exposure analysis and risk assessment. The human health risk, ecological risk and total risk of lead emissions were assessed. The factors were estimated to indicate the environmental decrease and exposure probability. Of all the 1887 t emissions in China in 2010(quantified in the previous work), it is turned out 1.3 t reached human bodies(0.9 mg/ca), and 2.7 t reached the ecosystem. Lead mainly came from the Use stage for the source while lead causing risk mainly came from the Waste Management Recycling and Production stages. As for chemical forms, PbO contributed most to the human health risk and PbSO_4 contributed most to the ecological risk. PbSO_4, PbO and Pb altogether contributed 71% to the total risk, indicating these three chemicals should be taken priority for the risk management.展开更多
Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulati...Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulation model, using system dy- namics methodology, to assess the sustainable performance of projects. Three major factors are used to examine project sus- tainable performance (PSP): the sustainability of economic development (E), the sustainability of social development (S), and the sustainability of environmental development (En). Sustainable development ability (SDA) was used as a prototype to evaluate the degree of sustainable performance. The simulation software ‘ithink’ was used to help with the application of the model to a real life case. This paper explains and demonstrates the procedures used to develop the model and finally offers an approach for assessing the feasibility of a construction project in terms of its sustainable performance.展开更多
美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)先进技术开发项目是研发目标明确、项目体量大、综合性强的任务导向型项目。基于科技项目生命周期过程管理研究基础,建立了科技项目管理分析框架,选取DARPA...美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)先进技术开发项目是研发目标明确、项目体量大、综合性强的任务导向型项目。基于科技项目生命周期过程管理研究基础,建立了科技项目管理分析框架,选取DARPA高空长航时无人机项目为典型案例,从项目选题、项目立项、项目实施、项目验收与转化4个阶段对DARPA先进技术开发项目管理实践进行梳理,总结了DARPA开展此类任务导向型科技项目的管理经验,以期为中国相关科技项目管理工作提供参考。展开更多
From 2003 to 2009 in Brazilian municipalities of over 60,000 inhabitants, buses accounted for more than 25% of urban trips. This trend is not expected to change in the medium term. Worldwide, buses rely on petroleum d...From 2003 to 2009 in Brazilian municipalities of over 60,000 inhabitants, buses accounted for more than 25% of urban trips. This trend is not expected to change in the medium term. Worldwide, buses rely on petroleum diesel as fuel. In Brazil, alternative fuels such as biodiesel, natural gas and ethanol are available and the choice among them should depend on the assessment of the entire life cycle of such fuels. This paper uses a Life Cycle Inventory, which is essential to the implementation of a Life Cycle Assessment, to assess six energy alternatives: petroleum diesel, biodiesel, petroleum diesel with 5% of biodiesel, compressed natural gas, additivated hydrous ethanol and dual-fuel system composed by petroleum diesel with 5% of biodiesel and compressed natural gas. In saving total energy consumption, pure petroleum diesel or mixed with 5% biodiesel and dual-fuel systems stand out, in that order. If renewable energy use and net carbon dioxide emissions reduction are the goals, ethanol and biodiesel should be given preference. The addition of 5% of biodiesel in petroleum diesel increases the share of renewable energy in the supply chain of petroleum diesel by 47.5% with an increase of 0.58% in total energy consumption and a reduction of 3.8% in net CO2 emissions during the life cycle. In the case of biodiesel, the addition of 5% of biodiesel in petroleum diesel increases the share of renewable energy in the supply chain by 51.15% with an increase of 0.03% in the total energy consumption and a decrease of 7% in net CO2 emissions in the life cycle. The use of 5% of biodiesel in petroleum diesel does not significantly affect the use of renewable energy (+0.69%) or total energy consumption (+0.04%) in ethanol supply chain, which already shows a great use of renewable energy input. However, a decrease of 9.29% in the net CO2 emissions in the supply chain occurs, which reaches 5.28% in the life cycle.展开更多
The critical path method is one of the oldest and most important techniques used for planning and scheduling projects.The main objective of project management science is to determine the critical path through a networ...The critical path method is one of the oldest and most important techniques used for planning and scheduling projects.The main objective of project management science is to determine the critical path through a network representation of projects.The critical path through a network can be determined by many algorithms and is useful for managing,monitoring,and controlling the time and cost of an entire project.The essential problem in this case is that activity durations are uncertain;time presents considerable uncertainty because the time of an activity is not always easily or accurately estimated.This issue increases the need to use neutrosophic theory to solve the critical path problem.Real-world problems are characterized by a lack of precision,consistency,and completeness.The concept of neutrosophic sets has been introduced as a generalization of fuzzy,intuitionistic fuzzy,and crisp sets to overcome the ambiguity surrounding real-world problems.Truth-,falsity-,and indeterminacy-membership functions are used to express neutrosophic elements.This study was performed to examine a neutrosophic event-oriented algorithm for determining the critical path in activity-on-arc networks.The activity time estimates are presented as trapezoidal neutrosophic numbers,and score and accuracy functions are used to obtain a crisp model of the problem.An appropriate numerical example is then used to explain the proposed method.展开更多
文摘This paper analyzes the present development situations of the real estate industry, puts forwards the low carbon development strategies based on the project life cycle for the real estate enterprises, and points out the corresponding assistant suggestions according to the predicament in the implementation of low carbon strategy. The purpose is to provide a theoretical reference for low carbon development of the real estate enterprises and the healthy and sustainable development of the real estate industry.
基金Fund Project in 2020,China(No.KKZ3202052058)and the support of Scientific Research Fund from Yunnan Education Department in China(No.2022J0064).
文摘The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results.
文摘The effective implementation of the project management plays a core roll in avoiding bad project use effect and waste of funds, caused by asset management planning and design errors or equipment selection errors;meanwhile, it can effectively improve the operational efficiency of enterprise assets, lower operating costs and save resources. In June 1974, A. Gordon published a paper “3L Economics Concept” as the starting point, on the “Building and Quantity Surveying”, which is organized by the Royal Institution of Chartered Surveyors. In this paper, a review of domestic and foreign research, from 1974 to 2015, on the total life cycle management progress will be given, and then a comment on it will be established. After detailed investigation and analysis of related materials, we can draw a conclusion: the study of the oil and gas development project lifecycle management is just beginning now. Hence, building the whole life cycle planning index system in line with the characteristics of oil and gas development project is very necessary.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFE0106000)the National Natural Science Foundation of China(Grant No.52206234).
文摘The anaerobic digestion(AD)disposal of stover and cattle manure is of great significance to the development of low-carbon economy and green energy in China,but it will also have an impact on the environment,and the degree of influence is different for various raw materials.In this study,life cycle assessment(LCA)methods were applied to analyze and compare the impact of corn stovers biogas projects(CSBP)and dairy manure biogas projects(DMBP)on the environment during the whole operation stage.The results of inventory analysis were evaluated by ReCiPe2016 Hierarchy(H)mid-point(problem-oriented)and end-point(destruction-oriented)method,respectively.The results showed that the net energy efficiency of CSBP was higher(763.903 kW·h/FU)and the greenhouse gas(GHG)emission reduction of DMBP was more(5541.418 kg CO_(2)-eq/FU).The anaerobic digestion(AD)units have the greatest environmental impacts,and human carcinogenic toxicity is the largest environmental impact category(1.16-1.43 PE).The key to reducing environmental impact is reducing the input of chemical substances and the waste of electric energy.Both CSBP and DMBP have a favorable impact on ecosystem quality and resources,and CSBP is more beneficial to the environment(-10.297 Pt).Co-digestion is an important measure to reduce the environmental damage from biogas projects.These research results provide theoretical support for the selection of raw materials for large-scale biogas projects in China,provide technical basis for reducing the impact of actual operation on the environment,and promote the resource utilization of agricultural waste and carbon dioxide emission reduction and sequestration.
基金Project(41171361) supported by the National Natural Science Foundation of China
文摘The risk assessment right from the source of emissions can effectively guide the pollution control. A model was established, consisting of four part: source estimation, environmental fate analysis, exposure analysis and risk assessment. The human health risk, ecological risk and total risk of lead emissions were assessed. The factors were estimated to indicate the environmental decrease and exposure probability. Of all the 1887 t emissions in China in 2010(quantified in the previous work), it is turned out 1.3 t reached human bodies(0.9 mg/ca), and 2.7 t reached the ecosystem. Lead mainly came from the Use stage for the source while lead causing risk mainly came from the Waste Management Recycling and Production stages. As for chemical forms, PbO contributed most to the human health risk and PbSO_4 contributed most to the ecological risk. PbSO_4, PbO and Pb altogether contributed 71% to the total risk, indicating these three chemicals should be taken priority for the risk management.
基金Project supported by the Research Grant Council of Hong Kong,China
文摘Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulation model, using system dy- namics methodology, to assess the sustainable performance of projects. Three major factors are used to examine project sus- tainable performance (PSP): the sustainability of economic development (E), the sustainability of social development (S), and the sustainability of environmental development (En). Sustainable development ability (SDA) was used as a prototype to evaluate the degree of sustainable performance. The simulation software ‘ithink’ was used to help with the application of the model to a real life case. This paper explains and demonstrates the procedures used to develop the model and finally offers an approach for assessing the feasibility of a construction project in terms of its sustainable performance.
文摘美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)先进技术开发项目是研发目标明确、项目体量大、综合性强的任务导向型项目。基于科技项目生命周期过程管理研究基础,建立了科技项目管理分析框架,选取DARPA高空长航时无人机项目为典型案例,从项目选题、项目立项、项目实施、项目验收与转化4个阶段对DARPA先进技术开发项目管理实践进行梳理,总结了DARPA开展此类任务导向型科技项目的管理经验,以期为中国相关科技项目管理工作提供参考。
文摘From 2003 to 2009 in Brazilian municipalities of over 60,000 inhabitants, buses accounted for more than 25% of urban trips. This trend is not expected to change in the medium term. Worldwide, buses rely on petroleum diesel as fuel. In Brazil, alternative fuels such as biodiesel, natural gas and ethanol are available and the choice among them should depend on the assessment of the entire life cycle of such fuels. This paper uses a Life Cycle Inventory, which is essential to the implementation of a Life Cycle Assessment, to assess six energy alternatives: petroleum diesel, biodiesel, petroleum diesel with 5% of biodiesel, compressed natural gas, additivated hydrous ethanol and dual-fuel system composed by petroleum diesel with 5% of biodiesel and compressed natural gas. In saving total energy consumption, pure petroleum diesel or mixed with 5% biodiesel and dual-fuel systems stand out, in that order. If renewable energy use and net carbon dioxide emissions reduction are the goals, ethanol and biodiesel should be given preference. The addition of 5% of biodiesel in petroleum diesel increases the share of renewable energy in the supply chain of petroleum diesel by 47.5% with an increase of 0.58% in total energy consumption and a reduction of 3.8% in net CO2 emissions during the life cycle. In the case of biodiesel, the addition of 5% of biodiesel in petroleum diesel increases the share of renewable energy in the supply chain by 51.15% with an increase of 0.03% in the total energy consumption and a decrease of 7% in net CO2 emissions in the life cycle. The use of 5% of biodiesel in petroleum diesel does not significantly affect the use of renewable energy (+0.69%) or total energy consumption (+0.04%) in ethanol supply chain, which already shows a great use of renewable energy input. However, a decrease of 9.29% in the net CO2 emissions in the supply chain occurs, which reaches 5.28% in the life cycle.
基金This work was supported by the Soonchunhyang University Research Fund.
文摘The critical path method is one of the oldest and most important techniques used for planning and scheduling projects.The main objective of project management science is to determine the critical path through a network representation of projects.The critical path through a network can be determined by many algorithms and is useful for managing,monitoring,and controlling the time and cost of an entire project.The essential problem in this case is that activity durations are uncertain;time presents considerable uncertainty because the time of an activity is not always easily or accurately estimated.This issue increases the need to use neutrosophic theory to solve the critical path problem.Real-world problems are characterized by a lack of precision,consistency,and completeness.The concept of neutrosophic sets has been introduced as a generalization of fuzzy,intuitionistic fuzzy,and crisp sets to overcome the ambiguity surrounding real-world problems.Truth-,falsity-,and indeterminacy-membership functions are used to express neutrosophic elements.This study was performed to examine a neutrosophic event-oriented algorithm for determining the critical path in activity-on-arc networks.The activity time estimates are presented as trapezoidal neutrosophic numbers,and score and accuracy functions are used to obtain a crisp model of the problem.An appropriate numerical example is then used to explain the proposed method.