Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the pr...Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.展开更多
Research Background: Sickle cell trait has no treatment or cure and predominantly affects people who are Black, but can affect anyone of any race or ethnicity. While commonly incorrectly considered benign by providers...Research Background: Sickle cell trait has no treatment or cure and predominantly affects people who are Black, but can affect anyone of any race or ethnicity. While commonly incorrectly considered benign by providers and the public, people with a sickle cell trait experience life-threatening outcomes that are exacerbated by extreme conditions. There is a severe lack of awareness and understanding of sickle cell trait and the associated health complications among sickle cell trait carriers and healthcare providers. Purpose/Aim: Interventions that aim to improve awareness of sickle cell trait differ in approaches and are not well documented in the literature. This typology aims to highlight current efforts to inform targeted interventions that raise awareness through consistent messaging, educate people and providers on sickle cell trait and the related health complications, and support the design and implementation of comprehensive sickle cell trait awareness initiatives. Methods: We conducted a scoping review of United States-based sickle cell trait interventions and performed a content analysis to identify the categories and characteristics of these efforts. We then organized the results into a typology according to established protocols. Results: Among 164 interventions, twenty-five (15%) met the typology inclusion criteria described above and were grouped into categories: Seven of twenty-five interventions were Educational Interventions (28%), three of twenty-five interventions (12%) were Combined Screening and Educational-Based Interventions, eight of twenty-five interventions (32%) were Policy and Guideline-Based Intervention, and six of twenty-five interventions (24%) were Sickle Cell Trait Organization-Led Interventions. Conclusions: There is a lack of consistency in messaging across interventions whether delivered by credible healthcare institutions or national organizations, which can result in lack of education and awareness and confusion around sickle cell trait. Categorizing interventions through a typology allows clarity and informs consistency in messaging, which should be at the forefront of future sickle cell trait efforts.展开更多
Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multi...Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.展开更多
Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential comm...Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.展开更多
Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhi...Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES.展开更多
In this study, 32 black rice genotypes spanning diverse geographies in India were evaluated at both phenotypic and DNA sequence levels to gain insights into their genetic makeup. Significant variations were observed f...In this study, 32 black rice genotypes spanning diverse geographies in India were evaluated at both phenotypic and DNA sequence levels to gain insights into their genetic makeup. Significant variations were observed for 14 agro-morphological traits, showing correlations among several yield-related traits.展开更多
The myostatin(MSTN)gene is considered a potential genetic marker to improve economically important traits in live-stock,since the discovery of its function using the MSTN knockout mice.The anti-myogenic function of th...The myostatin(MSTN)gene is considered a potential genetic marker to improve economically important traits in live-stock,since the discovery of its function using the MSTN knockout mice.The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations.In poultry species,myo-genesis in cell culture was regulated by modulation of the MSTN gene.Also,different expression levels of the MSTN gene in poultry models with different muscle mass have been reported,indicating the conserved myogenic function of the MSTN gene between mammalian and avian species.Recent advances of CRISPR/Cas9-mediated genome edit-ing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly dem-onstrate its anti-myogenic function and further investigate other potential functions in poultry species.This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms.Furthermore,the genome-edited poultry models targeting the MSTN gene are reviewed to inte-grate diverse effects of the MSTN gene on different traits of poultry species.展开更多
The giant freshwater prawn Macrobrachium rosenbergii distributed from tropical to subtropical regions,is a warm-water species,and its survival temperature is 14-35°C,which greatly limits its culture cycle and cul...The giant freshwater prawn Macrobrachium rosenbergii distributed from tropical to subtropical regions,is a warm-water species,and its survival temperature is 14-35°C,which greatly limits its culture cycle and culture area in China.Therefore,it is urgent to cultivate a new high quality,high yield variety with improved cold-resistance,but the genetic parameters for cold-resistance traits are unknown in M.rosenbergii.In this study,the cold-resistance of adult M.rosenbergii populations was tested using the indoor artificial cooling method.Individuals were selected from 139 families of Shufeng G3 generation and cultured for 200 days.A linear mixed model was constructed by ASReml-R to evaluate the genetic parameters of the cold-resistance trait(cooling degree hours,CDH)and growth traits(body weight,BW,and body length,BL)based on the restricted maximum likelihood(REML)method.The results show that the heritability of CDH was low(0.12±0.05),while the growth traits(BW and BL)had low to moderate heritability,with 0.20±0.06 for BW and 0.06±0.04 for BL.The phenotypic and genetic correlation between BW and BL was significantly positive,but significantly negative phenotypic and genetic correlations were detected between CDH and BW and between CDH and BL.Furthermore,the analysis of the differences between cold-resistance and phenotypic traits showed that the female reproductive status,exoskeleton hardness and claw number of adult prawns had a great influence on the cold-resistance of M.rosenbergii(P<0.05),indicating that adults with claws and hard exoskeletons are preferred as parents in subsequent breeding selection.The present results can be attributed to the selection and breeding of a new cold-resistant variety of M.rosenbergii.展开更多
Background Carcass traits are crucial indicators of meat production efficiency.However,the molecular regulatory mechanisms associated with these traits remain unclear.Results In this study,we conducted comprehensive t...Background Carcass traits are crucial indicators of meat production efficiency.However,the molecular regulatory mechanisms associated with these traits remain unclear.Results In this study,we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms.Based on association analyses with the elastic net(EN)model,we identified 12 candidate genes(AMY1A,AP3B2,CEBPG,EEF2,EIF4EBP1,FGFR1,FOXD3,GOLM1,LOC107052698,PABPC1,SERPINB6 and TBC1D16)for 4 carcass-related traits,namely live weight,dressed weight,eviscerated weight,and breast muscle weight.SERPINB6 was identified as the only overlapping gene by 3 analyses,EN model analysis,weighted gene co-expression network analysis and differential expression analysis.Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts.Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression.Furthermore,a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3′UTR of SERPINB6.Conclusions Collectively,our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation.Additionally,the downstream variant rs317934171 regulates SERPINB6 expression.These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.展开更多
Biodiversity declines have motivated many studies on the relationship between species diversity and ecosystem functioning.In this study,we described the spatial-temporal characteristics of demersal fish communities al...Biodiversity declines have motivated many studies on the relationship between species diversity and ecosystem functioning.In this study,we described the spatial-temporal characteristics of demersal fish communities along a coastal habitat in Rongcheng Bay,Shandong Peninsula,China with both species-based and biological trait-based approaches.The field survey was carried out monthly using traps from April to October of 2018,and divided into three seasons(spring:April and May;summer:June,July and August;autumn:September,October and November).The study area included five distinct habitats:seagrass bed,natural rocky reef,bare sand,artificial reef together with natural rocky reef,and artificial reef together with bare sand.We analyzed the fish communities with three taxonomic diversity indices,including Shannon-Wiener,Simpson,and Pielou Evenness,as well as four functional diversity indices,including FRic,FEve,FDiv,and FDis,based on 7 functional groups which are categorized into 27 traits.The results showed that there were no significant differences in taxonomic diversity indices among different habitats in the three seasons.However,significant differences were found in the functional richness of fish communities among different habitats in three seasons.Seagrass bed represented the highest functional richness in spring and autumn.This study demonstrates that seagrass bed is very important in enhancing the functional diversity of fish communities in a complex habitat.The study also indicates that the combination of taxonomic diversity and functional diversity will provide a more detailed description of the characteristics of fish communities.展开更多
Correction:J Cotton Res 7,20(2024)https://doi.org/10.1186/s42397-024-00180-3 Following publication of the original article(Shui et al.2024),the author found 5 errors in the published article.1.One of the author’s nam...Correction:J Cotton Res 7,20(2024)https://doi.org/10.1186/s42397-024-00180-3 Following publication of the original article(Shui et al.2024),the author found 5 errors in the published article.1.One of the author’s name has been corrected from Gou Chunping to Guo Chunping.2.The reference(Zhao SQ.2016)in Table 2 has been updated to:Zhao SQ.Analysis on the major gene and multigene mixed inheritance and QTL mapping for early maturity traits in upland cotton.Chin Acad Agric Sci.2016.https://doi.org/10.3969/j.issn.201600501.(in Chinese with English abstract).3.In’Results’part,’Phenotype analysis of 238 cotton boll abscission among cotton accessions’paragraph,the phenotype analysis of AR1 ranging from 19.27%–63.79%,which was wrongly written as 19.27%-63.97%.4.The‘2018KRL’is modified to‘2018KEL’in Table 1.展开更多
Plant polyploidy often occurs in conjunction with higher yield and superior quality.Therefore,obtaining polyploid germplasms is a significant part of breeding.The oil-tea Camellia tree is an important native woody pla...Plant polyploidy often occurs in conjunction with higher yield and superior quality.Therefore,obtaining polyploid germplasms is a significant part of breeding.The oil-tea Camellia tree is an important native woody plant that produces high-quality edible oil and includes many species of Camellia with different ploidies.However,whether higher ploidy levels in oil-tea Camellia trees are related to better traits remains unclear.In this study,the ploidy levels of 30 different oil-tea Camellia strains in three different species in the Sect.Paracamellia were determined by flow cytometry and chromosome preparation,and the phenotypic characteristics and fatty acid compositions of the fruits were examined by field observations and laboratory analyses.The correlations between the ploidy level of oil-tea Camellia and the main traits of the fruit were investigated.Our results showed that 10 Camellia lanceoleosa strains were diploid,10 Camellia meiocarpa strains were tetraploid and 10 Camellia oleifera strains were hexaploid.Hexaploid C.oleifera had larger fruit size and weight,more seeds per fruit,greater seed weight per fruit,higher oil content and greater yield per crown width than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their fruit peel thickness and fresh seed rate were significantly lower,and these traits were significantly correlated with ploidy level.In addition,in terms of fatty acid composition,hexaploid C.oleifera had a higher oleic acid content than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their linoleic acid,linolenic acid and arachidonic acid contents were lower.The contents of palmitic acid,stearic acid and total unsaturated fatty acids were not significantly correlated with ploidy level.In conclusion,certain correlations exist between the main characteristics of oil-tea Camellia fruit and the ploidy level,and increasing the ploidy level led to an increase in fruit yield with no effect on oil composition.The discovery of variations in the main characteristics of oil-tea Camellia fruit with different ploidies will facilitate germplasm innovation and lay a foundation for ploidy breeding and mechanistic research on fruit traits.展开更多
Growth traits are among the most important economic traits in pigs and are regulated by polygenes with complex regulatory mechanisms.As the major indicators of growth performance,the backfat thickness(BFT),loin eye ar...Growth traits are among the most important economic traits in pigs and are regulated by polygenes with complex regulatory mechanisms.As the major indicators of growth performance,the backfat thickness(BFT),loin eye area(LEA),and days to 100 kg(D100)traits are commonly used to the genetics improvement in pigs.However,the available genetic markers for these traits are limited.To uncover novel loci and candidate genes associated with growth performance,we collected the phenotypic information of BFT,LEA,and D100 in 1,186 pigs and genotyped all these individuals using the Neogen GGP porcine 80K BeadChip.We performed a genome-wide association study(GWAS)using 4 statistical models,including mixed linear models(MLM),fixed and random model circulating probability unification(FarmCPU),settlement of MLM under progressively exclusive relationships(SUPER),Bayesian-information and linkage-disequilibrium Iteratively nested keyway(Blink),and identified 5,3,and 6 high-confidence single nucleotide polymorphisms(SNPs)associated with BFT,LEA,and D100,respectively.Variant annotation and quantitative trait locus(QTL)mapping analysis suggested that6 genes(SKAP2,SATB1,PDE7B,PPP1R16B,WNT3,and WNT9B)were potentially associated with growth performance in pigs.Transcriptome analysis suggested that the expression of Src Kinase Associated Phosphoprotein 2(SKAP2)was higher in prenatal muscles than in postnatal muscles,and the expression of Phosphodiesterase 7B(PDE7B)continuously increased during the prenatal stages and gradually decreased after birth,implying their potential roles in prenatal skeletal muscle development.Overall,this study provides new candidate loci and genes for the genetic improvement of pigs.展开更多
[Objectives]Sugarcane is the most significant sugar cash crop in the tropical and subtropical regions of China.However,it is notable for its narrow genetic basis,limited trait improvement,weak adaptability of varietie...[Objectives]Sugarcane is the most significant sugar cash crop in the tropical and subtropical regions of China.However,it is notable for its narrow genetic basis,limited trait improvement,weak adaptability of varieties,and poor planting efficiency.In order to accelerate the process of sugarcane variety replacement and expand the basis of genetic variation,interspecific hybridization and multiple mutagenesis are the most effective methods for obtaining new sugarcane varieties.The evaluation and identification of phenotypic traits of germplasm represents a significant analytical method.The"Zhongtang"series of sugarcane varieties is distinguished by its high yield and high sugar content.New sugarcane germplasms with excellent agronomic and quality traits can be identified and developed as breeding parents and new breeding lines through comprehensive evaluation of the existing germplasm.[Methods]A total of 181 new lines were selected through genetic origin and orientation,and evaluated and appraised for growth,yield,and economic characteristics.The data on 6 important agronomic and quality traits,including tillering,initial plant height,plant height,stem diameter,number of effective stems,and brix at maturity,were used to discover superior lines.These traits were evaluated during the two production seasons of the participant lines.[Results]A comprehensive evaluation of seedling growth traits and economic traits at maturity of the experimental lines identified 30 excellent new germplasms of sugarcane.Among the selected lines,1501 and 1701 exhibited superior agronomic and quality traits,rendering them suitable as parental lines for sugarcane breeding or breeding as new varieties.[Conclusions]The exemplary results obtained in this study provide a solid foundation for the improvement of sugarcane germplasm,with the goal of enhancing quality and efficiency.These findings are of great scientific and practical significance to the study of sugarcane yield and sugar-related genes,as well as the exploration of the evaluation and utilization of sugarcane germplasm resources.展开更多
Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and c...Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.展开更多
Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maiz...Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maize is of great importance.In the current study,a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.In total,125 QTLs were detected using a high-density genetic bin map,with one to five QTLs explaining 6.05–32.02%of the phenotypic variation for each trait.The total phenotypic variation explained(PVE)by all detected QTLs ranged from 6.84 to 63.88%for each trait.Of all 125 QTLs,only three were major QTLs distributed in two genomic regions on chromosome 6,which were involved in three salt tolerance-related traits.In addition,10 pairs of epistatic QTLs with additive effects were detected for eight traits,explaining 0.9 to 4.44%of the phenotypic variation.Furthermore,18 QTL hotspots affecting 3–7 traits were identified.In one hotspot(L5),a gene cluster consisting of four genes(ZmNSA1,SAG6,ZmCLCg,and ZmHKT1;2)was found,suggesting the involvement of multiple pleiotropic genes.Finally,two important candidate genes,Zm00001d002090 and Zm00001d002391,were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.Zm00001d002090 encodes a calcium-dependent lipid-binding(CaLB domain)family protein,which may function as a Ca^(2+)sensor for transmitting the salt stress signal downstream,while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.展开更多
This study evaluated the variation in yellow root cassava (Manihot esculentus Crantz) genotypes and phenotypic relationship for selected postharvest and morphological traits. The trial was established at the Njala Agr...This study evaluated the variation in yellow root cassava (Manihot esculentus Crantz) genotypes and phenotypic relationship for selected postharvest and morphological traits. The trial was established at the Njala Agricultural Research Centre experimental site, Njala, during 2017/2018 cropping season in a randomized complete block design with three replications. Findings showed that the higher the total carotene content (TCC) in yellow flesh cassava genotypes, the longer the rate of postharvest physiological deterioration (PPD). Genotypes TR-0051-TCC/17 and TR-0012-TCC/17 recorded higher TCC (18.9 µg/g and 13.6 µg/g) and longer rate of PPD (4.29 and 3.14), respectively. Genotypes TR-0051-TCC/17, TR-0016-TCC/17, TR-0028-TCC/17, TR-0012-TCC/17 and TR-0020-TCC/17 had the highest TCC values of 18.9 µg/g, 16.09 µg/g, 14.72 µg/g, 13.6 µg/g and 11.23 µg/g with corresponding higher color chart values of 6, 6, 6, 5, and 6, respectively. This suggests the direct dependence of TCC on the root parenchyma color intensity in yellow flesh cassava genotypes. Findings also show a direct relationship between morphological and postharvest traits in yellow flesh cassava genotypes that could be exploited for the genetic improvement of cassava for increased shelf life, nutrition and related quality traits, as well as conservation and utilization of the crop.展开更多
AIM:To study the causal relationship between obesityrelated anthropometric traits and myopia and the mediating role of educational attainment(EA).METHODS:Univariable Mendelian randomization(UVMR)was performed to evalu...AIM:To study the causal relationship between obesityrelated anthropometric traits and myopia and the mediating role of educational attainment(EA).METHODS:Univariable Mendelian randomization(UVMR)was performed to evaluate the causal association between body mass index(BMI),height,waist-hip ratio(WHR,adjusted for BMI),and mean spherical equivalent(MSE).BMI was divided into fat and fat-free mass and included in multivariable Mendelian randomization(MVMR)to explore the roles of different BMI components in the causal relationship between BMI and MSE.A mediation analysis based on two-step Mendelian randomization(MR)was carried out.Specifically,UVMR was conducted to estimate the causal effect of BMI on EA.The direct effect of EA on MSE was estimated from MVMR.The mediation effect of EA in the BMI-EA-MSE model was calculated by the product of coefficients method.Expression quantitative trait loci(eQTL)-MR,reverse MR,and Linkage Disequilibrium Score Regression(LDSC)were performed to assess the robustness.RESULTS:Genetically predicted higher BMI had a positive total effect on MSE(βIVW=0.26 D,95%CI=0.14 to 0.37 D,P<0.001),whereas there was no significant association between height,WHR,and MSE.Fat mass was found to play a significant role in the effect of body mass on MSE(βIVW=0.50 D,95%CI=0.21 to 0.78 D,P=0.001),but there was no significant association between fat-free mass and MSE.The causal effect of BMI on EA was-0.14(95%CI=-0.16 to-0.11,P<0.001),and the direct effect of EA on MSE was-0.63 D(95%CI=-0.81 to-0.44 D,P<0.001).The mediating effect of EA in the BMI-EA-MSE model was 0.09 D(95%CI=0.06 to 0.12 D),with a mediation proportion of 33%(95%CI=22.1%to 44.6%).No reverse causal associations were detected except for BMI on EA.The results of eQTL-MR and LDSC were consistent with each MR analysis.CONCLUSION:Genetically predicted higher BMI decreases the degree of myopia with a 33%mediation proportion by EA,and fat mass provides a dominant protective role in body mass-myopia.As a supplement to previous observational studies,it provides strong evidence for the relationship between anthropometric traits and refractive errors and offers a theoretical basis for future measures to prevent and control myopia.展开更多
The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water cost...The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.展开更多
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B222)the China Agriculture Research System(CARS-15-06)the Key R&D Project of Eight Division of Xinjiang Production and Construction Corps,China(2021NY01)。
文摘Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.
文摘Research Background: Sickle cell trait has no treatment or cure and predominantly affects people who are Black, but can affect anyone of any race or ethnicity. While commonly incorrectly considered benign by providers and the public, people with a sickle cell trait experience life-threatening outcomes that are exacerbated by extreme conditions. There is a severe lack of awareness and understanding of sickle cell trait and the associated health complications among sickle cell trait carriers and healthcare providers. Purpose/Aim: Interventions that aim to improve awareness of sickle cell trait differ in approaches and are not well documented in the literature. This typology aims to highlight current efforts to inform targeted interventions that raise awareness through consistent messaging, educate people and providers on sickle cell trait and the related health complications, and support the design and implementation of comprehensive sickle cell trait awareness initiatives. Methods: We conducted a scoping review of United States-based sickle cell trait interventions and performed a content analysis to identify the categories and characteristics of these efforts. We then organized the results into a typology according to established protocols. Results: Among 164 interventions, twenty-five (15%) met the typology inclusion criteria described above and were grouped into categories: Seven of twenty-five interventions were Educational Interventions (28%), three of twenty-five interventions (12%) were Combined Screening and Educational-Based Interventions, eight of twenty-five interventions (32%) were Policy and Guideline-Based Intervention, and six of twenty-five interventions (24%) were Sickle Cell Trait Organization-Led Interventions. Conclusions: There is a lack of consistency in messaging across interventions whether delivered by credible healthcare institutions or national organizations, which can result in lack of education and awareness and confusion around sickle cell trait. Categorizing interventions through a typology allows clarity and informs consistency in messaging, which should be at the forefront of future sickle cell trait efforts.
基金supported by National Natural Science Foundation of China(42001305)Guangdong Basic and Applied Basic Research Foundation(2022A1515011459)+3 种基金GDAS’Special Project of Science and Technology Development(2020GDASYL-20200102001)Guangzhou Basic and Applied Basic Research Foundation(2023A04J1534)to Z.W.the US National Science Foundation(NSF)Macrosystems Biology and NEON-Enabled Science grant 1638720 to P.A.T.E.L.K.and NSF Biology Integration Institute award ASCEND,DBI-2021898 to P.A.T.
文摘Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.
基金supported by the National Natural Science Foundation of China(NSFC:32260268)the Science and Technology Project of Guizhou Province[(2021)General-455]the Guizhou Hundred-level Innovative Talents Project[Qian-ke-he platform talents(2020)6004-2].
文摘Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.
基金funded by the EU Regional Development Fund within the framework of the Centre of Excellence EcolChange(2014-2020.4.01.15-0002),the European Commission through the European Research Council(advanced grant 322603,SIPVOL+),the Estonian Research Council(personal grant PSG884)base funding nr 190200,the National Natural Science foundation of China(31711530648)+2 种基金the Personnel Startup Project of the Scientific Research and Development Foundation of Zhejiang A&F University(2021FR041)the study was partly purchased from funding by the EU Regional Development Fund(AnaEE Estonia,2014-2020.4.01.20-0285,and the project“Plant Biology Infrastructure-TAIM”,2014-2020.4.01.20-0282)the Estonian Research Council(“Plant Biology Infrastructure-TAIM”,TT5).
文摘Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES.
文摘In this study, 32 black rice genotypes spanning diverse geographies in India were evaluated at both phenotypic and DNA sequence levels to gain insights into their genetic makeup. Significant variations were observed for 14 agro-morphological traits, showing correlations among several yield-related traits.
基金funded by the United States Department of Agricul-ture National Institute of Food and Agriculture Grant(Project No.2020-67030-31338)。
文摘The myostatin(MSTN)gene is considered a potential genetic marker to improve economically important traits in live-stock,since the discovery of its function using the MSTN knockout mice.The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations.In poultry species,myo-genesis in cell culture was regulated by modulation of the MSTN gene.Also,different expression levels of the MSTN gene in poultry models with different muscle mass have been reported,indicating the conserved myogenic function of the MSTN gene between mammalian and avian species.Recent advances of CRISPR/Cas9-mediated genome edit-ing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly dem-onstrate its anti-myogenic function and further investigate other potential functions in poultry species.This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms.Furthermore,the genome-edited poultry models targeting the MSTN gene are reviewed to inte-grate diverse effects of the MSTN gene on different traits of poultry species.
基金Supported by the Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural(Aquaculture)Varieties(No.2021C02069-4-3)the Major Research&Development Program(Modern Agriculture)of Jiangsu Province(No.BE2019352)+1 种基金the Earmarked Fund for the China Agriculture Research System(No.CARS-48)the Innovation Project of Postgraduate Scientific Research in Huzhou University in 2022(No.2022KYCX63)。
文摘The giant freshwater prawn Macrobrachium rosenbergii distributed from tropical to subtropical regions,is a warm-water species,and its survival temperature is 14-35°C,which greatly limits its culture cycle and culture area in China.Therefore,it is urgent to cultivate a new high quality,high yield variety with improved cold-resistance,but the genetic parameters for cold-resistance traits are unknown in M.rosenbergii.In this study,the cold-resistance of adult M.rosenbergii populations was tested using the indoor artificial cooling method.Individuals were selected from 139 families of Shufeng G3 generation and cultured for 200 days.A linear mixed model was constructed by ASReml-R to evaluate the genetic parameters of the cold-resistance trait(cooling degree hours,CDH)and growth traits(body weight,BW,and body length,BL)based on the restricted maximum likelihood(REML)method.The results show that the heritability of CDH was low(0.12±0.05),while the growth traits(BW and BL)had low to moderate heritability,with 0.20±0.06 for BW and 0.06±0.04 for BL.The phenotypic and genetic correlation between BW and BL was significantly positive,but significantly negative phenotypic and genetic correlations were detected between CDH and BW and between CDH and BL.Furthermore,the analysis of the differences between cold-resistance and phenotypic traits showed that the female reproductive status,exoskeleton hardness and claw number of adult prawns had a great influence on the cold-resistance of M.rosenbergii(P<0.05),indicating that adults with claws and hard exoskeletons are preferred as parents in subsequent breeding selection.The present results can be attributed to the selection and breeding of a new cold-resistant variety of M.rosenbergii.
基金supported by grants from the Key Projects of National Natural Science Foundation of China (No. 32230101)the Project of Qingyuan Science and Technology (2020A01, 2021SJXM011)+1 种基金the Agriculture Research System (CARS-41)the Core Breed Source Research Project JBGS (2021) 107
文摘Background Carcass traits are crucial indicators of meat production efficiency.However,the molecular regulatory mechanisms associated with these traits remain unclear.Results In this study,we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms.Based on association analyses with the elastic net(EN)model,we identified 12 candidate genes(AMY1A,AP3B2,CEBPG,EEF2,EIF4EBP1,FGFR1,FOXD3,GOLM1,LOC107052698,PABPC1,SERPINB6 and TBC1D16)for 4 carcass-related traits,namely live weight,dressed weight,eviscerated weight,and breast muscle weight.SERPINB6 was identified as the only overlapping gene by 3 analyses,EN model analysis,weighted gene co-expression network analysis and differential expression analysis.Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts.Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression.Furthermore,a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3′UTR of SERPINB6.Conclusions Collectively,our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation.Additionally,the downstream variant rs317934171 regulates SERPINB6 expression.These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.
基金supported by funds from the National Natural Science Foundation of China(No.42076100)the Joint Funds of the National Natural Science Foundation of China(No.U2006214).
文摘Biodiversity declines have motivated many studies on the relationship between species diversity and ecosystem functioning.In this study,we described the spatial-temporal characteristics of demersal fish communities along a coastal habitat in Rongcheng Bay,Shandong Peninsula,China with both species-based and biological trait-based approaches.The field survey was carried out monthly using traps from April to October of 2018,and divided into three seasons(spring:April and May;summer:June,July and August;autumn:September,October and November).The study area included five distinct habitats:seagrass bed,natural rocky reef,bare sand,artificial reef together with natural rocky reef,and artificial reef together with bare sand.We analyzed the fish communities with three taxonomic diversity indices,including Shannon-Wiener,Simpson,and Pielou Evenness,as well as four functional diversity indices,including FRic,FEve,FDiv,and FDis,based on 7 functional groups which are categorized into 27 traits.The results showed that there were no significant differences in taxonomic diversity indices among different habitats in the three seasons.However,significant differences were found in the functional richness of fish communities among different habitats in three seasons.Seagrass bed represented the highest functional richness in spring and autumn.This study demonstrates that seagrass bed is very important in enhancing the functional diversity of fish communities in a complex habitat.The study also indicates that the combination of taxonomic diversity and functional diversity will provide a more detailed description of the characteristics of fish communities.
文摘Correction:J Cotton Res 7,20(2024)https://doi.org/10.1186/s42397-024-00180-3 Following publication of the original article(Shui et al.2024),the author found 5 errors in the published article.1.One of the author’s name has been corrected from Gou Chunping to Guo Chunping.2.The reference(Zhao SQ.2016)in Table 2 has been updated to:Zhao SQ.Analysis on the major gene and multigene mixed inheritance and QTL mapping for early maturity traits in upland cotton.Chin Acad Agric Sci.2016.https://doi.org/10.3969/j.issn.201600501.(in Chinese with English abstract).3.In’Results’part,’Phenotype analysis of 238 cotton boll abscission among cotton accessions’paragraph,the phenotype analysis of AR1 ranging from 19.27%–63.79%,which was wrongly written as 19.27%-63.97%.4.The‘2018KRL’is modified to‘2018KEL’in Table 1.
基金supported by the Special Funds for Construction of Innovative Provinces in Hunan Province,China(2021NK1007)the Hunan Provincial Innovation Foundation for Postgraduate,China(CX20230779)the Scientific Innovation Fund for Post-graduates of Central South University of Forestry and Technology,China(2023CX01009)。
文摘Plant polyploidy often occurs in conjunction with higher yield and superior quality.Therefore,obtaining polyploid germplasms is a significant part of breeding.The oil-tea Camellia tree is an important native woody plant that produces high-quality edible oil and includes many species of Camellia with different ploidies.However,whether higher ploidy levels in oil-tea Camellia trees are related to better traits remains unclear.In this study,the ploidy levels of 30 different oil-tea Camellia strains in three different species in the Sect.Paracamellia were determined by flow cytometry and chromosome preparation,and the phenotypic characteristics and fatty acid compositions of the fruits were examined by field observations and laboratory analyses.The correlations between the ploidy level of oil-tea Camellia and the main traits of the fruit were investigated.Our results showed that 10 Camellia lanceoleosa strains were diploid,10 Camellia meiocarpa strains were tetraploid and 10 Camellia oleifera strains were hexaploid.Hexaploid C.oleifera had larger fruit size and weight,more seeds per fruit,greater seed weight per fruit,higher oil content and greater yield per crown width than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their fruit peel thickness and fresh seed rate were significantly lower,and these traits were significantly correlated with ploidy level.In addition,in terms of fatty acid composition,hexaploid C.oleifera had a higher oleic acid content than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their linoleic acid,linolenic acid and arachidonic acid contents were lower.The contents of palmitic acid,stearic acid and total unsaturated fatty acids were not significantly correlated with ploidy level.In conclusion,certain correlations exist between the main characteristics of oil-tea Camellia fruit and the ploidy level,and increasing the ploidy level led to an increase in fruit yield with no effect on oil composition.The discovery of variations in the main characteristics of oil-tea Camellia fruit with different ploidies will facilitate germplasm innovation and lay a foundation for ploidy breeding and mechanistic research on fruit traits.
基金supported by the National Natural Science Foundation of China(32172697,31830090,and 32002151)the Guangdong Provincial Natural Science Foundation,China(2021A1515011336)the Chinese Academy of Agricultural Sciences(CAAS-ZDRW202006)。
文摘Growth traits are among the most important economic traits in pigs and are regulated by polygenes with complex regulatory mechanisms.As the major indicators of growth performance,the backfat thickness(BFT),loin eye area(LEA),and days to 100 kg(D100)traits are commonly used to the genetics improvement in pigs.However,the available genetic markers for these traits are limited.To uncover novel loci and candidate genes associated with growth performance,we collected the phenotypic information of BFT,LEA,and D100 in 1,186 pigs and genotyped all these individuals using the Neogen GGP porcine 80K BeadChip.We performed a genome-wide association study(GWAS)using 4 statistical models,including mixed linear models(MLM),fixed and random model circulating probability unification(FarmCPU),settlement of MLM under progressively exclusive relationships(SUPER),Bayesian-information and linkage-disequilibrium Iteratively nested keyway(Blink),and identified 5,3,and 6 high-confidence single nucleotide polymorphisms(SNPs)associated with BFT,LEA,and D100,respectively.Variant annotation and quantitative trait locus(QTL)mapping analysis suggested that6 genes(SKAP2,SATB1,PDE7B,PPP1R16B,WNT3,and WNT9B)were potentially associated with growth performance in pigs.Transcriptome analysis suggested that the expression of Src Kinase Associated Phosphoprotein 2(SKAP2)was higher in prenatal muscles than in postnatal muscles,and the expression of Phosphodiesterase 7B(PDE7B)continuously increased during the prenatal stages and gradually decreased after birth,implying their potential roles in prenatal skeletal muscle development.Overall,this study provides new candidate loci and genes for the genetic improvement of pigs.
基金Supported by High-level Talents Project of Basic and Applied Basic Research Program(Natural Science Field)of Hainan Province(320RC715)Earmarked Fund for China Agricultural Research System(CARS-170716).
文摘[Objectives]Sugarcane is the most significant sugar cash crop in the tropical and subtropical regions of China.However,it is notable for its narrow genetic basis,limited trait improvement,weak adaptability of varieties,and poor planting efficiency.In order to accelerate the process of sugarcane variety replacement and expand the basis of genetic variation,interspecific hybridization and multiple mutagenesis are the most effective methods for obtaining new sugarcane varieties.The evaluation and identification of phenotypic traits of germplasm represents a significant analytical method.The"Zhongtang"series of sugarcane varieties is distinguished by its high yield and high sugar content.New sugarcane germplasms with excellent agronomic and quality traits can be identified and developed as breeding parents and new breeding lines through comprehensive evaluation of the existing germplasm.[Methods]A total of 181 new lines were selected through genetic origin and orientation,and evaluated and appraised for growth,yield,and economic characteristics.The data on 6 important agronomic and quality traits,including tillering,initial plant height,plant height,stem diameter,number of effective stems,and brix at maturity,were used to discover superior lines.These traits were evaluated during the two production seasons of the participant lines.[Results]A comprehensive evaluation of seedling growth traits and economic traits at maturity of the experimental lines identified 30 excellent new germplasms of sugarcane.Among the selected lines,1501 and 1701 exhibited superior agronomic and quality traits,rendering them suitable as parental lines for sugarcane breeding or breeding as new varieties.[Conclusions]The exemplary results obtained in this study provide a solid foundation for the improvement of sugarcane germplasm,with the goal of enhancing quality and efficiency.These findings are of great scientific and practical significance to the study of sugarcane yield and sugar-related genes,as well as the exploration of the evaluation and utilization of sugarcane germplasm resources.
基金This study was supported by the National Natural Science Foundation of China(42271396)the Natural Science Foundation of Shandong Province(ZR2022MD017)+1 种基金the Key R&D Project of Hebei Province(22326406D)The European Space Agency(ESA)and Ministry of Science and Technology of China(MOST)Dragon(57457).
文摘Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
基金supported by grants from the National Natural Science Foundation of China(32101730)the National Key R&D Program Projects,China(2021YFD1201005)+2 种基金the Beijing Academy of Agriculture and Forestry Sciences(BAAFS)Excellent Scientist Training Program,China(JKZX202202)the BAAFS Science and Technology Innovation Capability Improvement Project,China(KJCX20230433)。
文摘Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maize is of great importance.In the current study,a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.In total,125 QTLs were detected using a high-density genetic bin map,with one to five QTLs explaining 6.05–32.02%of the phenotypic variation for each trait.The total phenotypic variation explained(PVE)by all detected QTLs ranged from 6.84 to 63.88%for each trait.Of all 125 QTLs,only three were major QTLs distributed in two genomic regions on chromosome 6,which were involved in three salt tolerance-related traits.In addition,10 pairs of epistatic QTLs with additive effects were detected for eight traits,explaining 0.9 to 4.44%of the phenotypic variation.Furthermore,18 QTL hotspots affecting 3–7 traits were identified.In one hotspot(L5),a gene cluster consisting of four genes(ZmNSA1,SAG6,ZmCLCg,and ZmHKT1;2)was found,suggesting the involvement of multiple pleiotropic genes.Finally,two important candidate genes,Zm00001d002090 and Zm00001d002391,were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.Zm00001d002090 encodes a calcium-dependent lipid-binding(CaLB domain)family protein,which may function as a Ca^(2+)sensor for transmitting the salt stress signal downstream,while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.
文摘This study evaluated the variation in yellow root cassava (Manihot esculentus Crantz) genotypes and phenotypic relationship for selected postharvest and morphological traits. The trial was established at the Njala Agricultural Research Centre experimental site, Njala, during 2017/2018 cropping season in a randomized complete block design with three replications. Findings showed that the higher the total carotene content (TCC) in yellow flesh cassava genotypes, the longer the rate of postharvest physiological deterioration (PPD). Genotypes TR-0051-TCC/17 and TR-0012-TCC/17 recorded higher TCC (18.9 µg/g and 13.6 µg/g) and longer rate of PPD (4.29 and 3.14), respectively. Genotypes TR-0051-TCC/17, TR-0016-TCC/17, TR-0028-TCC/17, TR-0012-TCC/17 and TR-0020-TCC/17 had the highest TCC values of 18.9 µg/g, 16.09 µg/g, 14.72 µg/g, 13.6 µg/g and 11.23 µg/g with corresponding higher color chart values of 6, 6, 6, 5, and 6, respectively. This suggests the direct dependence of TCC on the root parenchyma color intensity in yellow flesh cassava genotypes. Findings also show a direct relationship between morphological and postharvest traits in yellow flesh cassava genotypes that could be exploited for the genetic improvement of cassava for increased shelf life, nutrition and related quality traits, as well as conservation and utilization of the crop.
基金Supported by Hubei Province Key Research and Development Program Project,Hubei Provincial Department of Science and Technology(No.2022BCA044)Key Scientific Research Projects of Health Commission of Hubei Province in 2023-2024,Health Commission of Hubei Province(No.WJ2023Z006).
文摘AIM:To study the causal relationship between obesityrelated anthropometric traits and myopia and the mediating role of educational attainment(EA).METHODS:Univariable Mendelian randomization(UVMR)was performed to evaluate the causal association between body mass index(BMI),height,waist-hip ratio(WHR,adjusted for BMI),and mean spherical equivalent(MSE).BMI was divided into fat and fat-free mass and included in multivariable Mendelian randomization(MVMR)to explore the roles of different BMI components in the causal relationship between BMI and MSE.A mediation analysis based on two-step Mendelian randomization(MR)was carried out.Specifically,UVMR was conducted to estimate the causal effect of BMI on EA.The direct effect of EA on MSE was estimated from MVMR.The mediation effect of EA in the BMI-EA-MSE model was calculated by the product of coefficients method.Expression quantitative trait loci(eQTL)-MR,reverse MR,and Linkage Disequilibrium Score Regression(LDSC)were performed to assess the robustness.RESULTS:Genetically predicted higher BMI had a positive total effect on MSE(βIVW=0.26 D,95%CI=0.14 to 0.37 D,P<0.001),whereas there was no significant association between height,WHR,and MSE.Fat mass was found to play a significant role in the effect of body mass on MSE(βIVW=0.50 D,95%CI=0.21 to 0.78 D,P=0.001),but there was no significant association between fat-free mass and MSE.The causal effect of BMI on EA was-0.14(95%CI=-0.16 to-0.11,P<0.001),and the direct effect of EA on MSE was-0.63 D(95%CI=-0.81 to-0.44 D,P<0.001).The mediating effect of EA in the BMI-EA-MSE model was 0.09 D(95%CI=0.06 to 0.12 D),with a mediation proportion of 33%(95%CI=22.1%to 44.6%).No reverse causal associations were detected except for BMI on EA.The results of eQTL-MR and LDSC were consistent with each MR analysis.CONCLUSION:Genetically predicted higher BMI decreases the degree of myopia with a 33%mediation proportion by EA,and fat mass provides a dominant protective role in body mass-myopia.As a supplement to previous observational studies,it provides strong evidence for the relationship between anthropometric traits and refractive errors and offers a theoretical basis for future measures to prevent and control myopia.
基金supported by the Indian Council of Agricultural Research-International Rice Research Institute Collaborative Project, India (Grant No. OXX4928)。
文摘The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.