With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process...With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.展开更多
Considering the accidents of ships for dangerous chemicals transportation in inland rivers,a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is propos...Considering the accidents of ships for dangerous chemicals transportation in inland rivers,a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is proposed in this paper.Geographic information,such as rivers and buildings in the model,is obtained through Google Earth and structures of rivers and buildings are described by Auto CAD.In addition,the Fluent is adopted to simulate the leakage and diffusion processes of the dangerous chemicals where the standard k-εmodel is used to calculate the turbulent flow.Considering the interaction between chemicals and water,the VOF method is used to describe the leakage,drift and diffusion process of dangerous chemicals groups on the water surface.Taking a section of the Yangtze River as an example,the leakage and diffusion processes from a ship carrying 3,000 tons of low-solubility and low-volatile dangerous chemicals are studied,and the characteristics of leakage and diffusion are analyzed in detail.During the simulation,the area of the maximum group of leaked dangerous chemicals reaches up to about 1800 m2,and the number reaches up to 45.Furthermore,the influence of density,viscosity,water velocity and leakage velocity on the leakage and diffusion processes is investigated in this paper.展开更多
In this paper the authors cite the aerosol samples collected with a KA-200 Anderson cascade Impactor and a KB-120 sampler during the first cruise of the Kuroshio investigation operated by the People's Republic of ...In this paper the authors cite the aerosol samples collected with a KA-200 Anderson cascade Impactor and a KB-120 sampler during the first cruise of the Kuroshio investigation operated by the People's Republic of China and Japan cooperative program, from July 23 to August 21, 1987. The concentration size distributions and composition of marine aerosols over the Kuroshio area are analyzed. Neutron activation analysis is used to determine the elemental composition of the aerosols. The authors also discuss some characteristics of marine aerosols relating to long-range transport of crustal and anthropogenic elements from the continent to the remote ocean. Analytical results indicate that elements Al, Fe, Sc and Sb over this area are obviously influenced by the continent of Asia, and the size distributions are changed after long-range transport. The concentration of large particles increase. The concentrations of the elements C1 and Na are closely related to ocean conditions; the source of the elements Cl and Na is mainly the ocean. Besides coal combustion, the ocean is also a very important source for the element Se. The amount of Se is related to the distribution of marine life.展开更多
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function...The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices.展开更多
Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, ...Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, the physical and chemical properties of Earth’s constituents (e.g., silicate and carbonate minerals) are strongly affected by their immediate environment. In the past 30 years, there has been a tremendous amount of progress in both experimental techniques and theoretical modeling methods for material characterization under extreme conditions. These advancements have elevated our understanding of the properties of minerals, which is essential in order to achieve full comprehension of the formation of this planet and the origin of life on it. This article reviews recent computational techniques for predicting the behavior of materials under extreme conditions. This survey is limited to the application of the first-principles molecular dynamics (FPMD) method to the investigation of chemical and thermodynamic transport processes relevant to Earth Science.展开更多
Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC comp...Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC composites. Convection in preform was neglected in one model where momentum transport in preform is neglected and mass transport in preform is dominated by diffusion. Whereas convection in preform was taken into account in the other model where momentum transport in preform is represented by BRINKMAN equations and mass transport in preform includes both diffusion and convection. The integrated models were solved by finite element method. The calculation results show that convection in preform have negligible effect on both velocity distribution and concentration distribution. The difference between MTS molarities in preform of the two models is less than 5×10-5, which indicates that ignorance of convection in preform is reasonable and acceptable for numerical simulation of ICVI process of C/SiC composites.展开更多
The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone (03) in the Pearl River Delta Region (PRD) was studied using numerical simulation. The aim of this study ...The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone (03) in the Pearl River Delta Region (PRD) was studied using numerical simulation. The aim of this study was to examine the volatile organic compound (VOC)- or nitrogen oxide (NO~ =NO+NO2)- limited conditions at present and when surface temperature is increasing due to global warming, thus to make recommendations for future ozone abatement policies for the PRD region. The model used for this application is the U.S. Environmental Protection Agency's (EPA's) third-generation air-quality modeling system; it consists of the mesoscale meteorological model MM5 and the chemical transport model named Community Multi-scale Air Quality (CMAQ). A series of sensitivity tests were conducted to assess the influence of VOC and NO~ variations on ozone production. Tropical cyclone was shown to be one of the important synoptic weather patterns leading to ozone pollution. The simulations were based on a tropical- cyclone-related episode that occurred during 14-16 September 2004. The results show that, in the future, the control strategy for emissions should be tightened. To reduce the current level of ozone to meet the Hong Kong Environmental Protection Department (EPD) air-quality objective (hourly average of 120 ppb), emphasis should be put on restricting the increase of NOx emissions. Furthermore, for a wide range of possible changes in precursor emissions, temperature increase will increase the ozone peak in the PRD region; the areas affected by photochemical smog are growing wider, but the locations of the ozone plume are rather invariant.展开更多
The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is ...The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is thought to be an effective method to create fracture networks and open existing fractures in hot dry rocks by injecting chemical agents into the reservoir to dissolve the minerals. Granite is a common type of hot dry rock. In this paper, a series of chemical stimulation experiments were implemented using acid and alkaline agents under high temperature and pressure conditions that mimic the environment of formation. Granite rock samples used in the experiments are collected from the potential EGS reservoir in the Matouying area, Hebei, China. Laboratory experimental results show that the corrosion ratio per unit area of rock is 3.2% in static acid chemical experiments and 0.51% in static alkaline chemical experiments. The permeability of the core is increased by 1.62 times in dynamic acid chemical experiments and 2.45 times in dynamic alkaline chemical experiments. A scanning electron microscope analysis of the core illustrates that secondary minerals, such as chlorite, spherical silica, and montmorillonite, were formed, due to acid-rock interaction with plagioclase being precipitated by alkaline-rock interactions. Masking agents in alkaline chemical agents can slightly reduce the degree of plagioclase formation. A chemical simulation model was built using TOUGHREACT, the mineral dissolution and associated ion concentration variation being reproduced by this reactive transport model.展开更多
High-quality large 1T phase of TiX_(2)(X = Te, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural an...High-quality large 1T phase of TiX_(2)(X = Te, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported A_(1g) and E_(8) modes, the rarely reported E_(u) mode(-83 cm^(-1) for TiTe_(2), and -185 cm^(-1)for TiS_(2)), and even the unexpected K mode(-85 cm^(-1)) of TiTe_(2). Most phonons harden with the decrease of temperature, except that the K mode of TiTe_(2) and the E_(u) and “A_(2u)/Sh” modes of TiS_(2) soften with the decrease of temperature. In addition, we also found phonon changes in TiSe_(2) that may be related to charge density wave phase transition. Our results on TiX_(2) phonons will help to understand their charge density wave and superconductivity.展开更多
The transport of dangerous goods always represents a potential risk to life,human health,property,and environmental protection.For this reason and in order to preserve the lives and health of the participants in the t...The transport of dangerous goods always represents a potential risk to life,human health,property,and environmental protection.For this reason and in order to preserve the lives and health of the participants in the transport process,adequate protection measures must be taken before,during,and after the transport of dangerous goods.Since the railway itself is a recipient of dangerous goods that are essential for its own operation,and is also a carrier of large quantities of various dangerous goods,these measures are of paramount importance.This paper examines,from a point of view of the protection of lives and health of the participants in the transport process and the safe transport of dangerous goods,the conditions of shipment and transport of dangerous goods,the obligations of the participants,and the essential ways for their proper handling.Proper application of safety at work prevents impromptu and indolent attitude in transporting dangerous goods,thus contributing to protection of people lives and health.Finally,this paper includes preventive measures and basic principles for implementation of safety at work in the transport of dangerous goods.展开更多
Inorganic NiO_(x) based inverted structure perovskite solar cells (PSCs) is reported to be more stable than that with the organic hole transport materials.In this work,NiO_(x)/MAPbI_(3) interface chemical reaction ind...Inorganic NiO_(x) based inverted structure perovskite solar cells (PSCs) is reported to be more stable than that with the organic hole transport materials.In this work,NiO_(x)/MAPbI_(3) interface chemical reaction induced instability of perovskite is unveiled:Ni^(3+) and I^(-) exhibit redox reactions and deprotonation of MA^(+) happens,which result in interface defects and perovskite lattice deformation.Thus the defective interface accelerates the degradation of perovskite by defect pathways from the bottom interface to the perovskite surface contacting H_(2)O/O_(2).Self-assembled interlayer of NH_(2)^(-)end silane on NiO_(x)separates the reactive NiO_(x)and MAPbI_(3),tunes the interface energy states by–NH_(2) end group.As a result,the PSC based on the silane treated NiO_(x)achieves enhanced PCE of 20.1%with decent stability under environmental and extreme conditions (high temperature,high humidity,light infiltration).Our work highlights the interface chemical problem induced PSC instability and a simple interface modification to achieve the stable PSCs.展开更多
In the paper it has reviewed the monitoring of vehicles in the transport of hazardous substances based on the using of GPS/GSM technology. The basic principles of the GPS concept and hardware have been exhibited which...In the paper it has reviewed the monitoring of vehicles in the transport of hazardous substances based on the using of GPS/GSM technology. The basic principles of the GPS concept and hardware have been exhibited which are implemented in locating the vehicle. They have also identified the locating techniques underlying the monitoring process. It has presented an active system for monitoring parameters of the means of transport.展开更多
ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown b...ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.展开更多
The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with ...The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.展开更多
The mutual separation characteristics were investigated for the neighboring Sm, Eu and Gd from their ternary oxide mixture Sm 2O 3 Eu 2O 3 Gd 2O 3 by a stepwise chlorination chemical vapor transport reaction ...The mutual separation characteristics were investigated for the neighboring Sm, Eu and Gd from their ternary oxide mixture Sm 2O 3 Eu 2O 3 Gd 2O 3 by a stepwise chlorination chemical vapor transport reaction within 6 h using AlCl 3 as complex former. The rare earth chlorides were more readily transported and concentrated in the middle temperature range of 980~1100 K and the transport efficiency was in the order of Sm≈Gd>Eu. The separation factor, expressed as molar ratio for the resulting chlorides, was 1 70 for Eu∶Sm, 1 88 for Eu∶Gd, 1 24 for Sm∶Gd in the higher temperature region, and 2 76 for Sm∶Eu, 2 83 for Gd∶Eu and 1 12 for Gd∶Sm in the lower temperature region, respectively. All results are much higher than those of the conventional wet process.展开更多
Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-s...Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.展开更多
In order to improve the uniformity of both the concentration of gaseous reagent and the deposition of matrix within micro pores during the chemical vapor infiltration (CVI) process, a calculation modeling of gas phase...In order to improve the uniformity of both the concentration of gaseous reagent and the deposition of matrix within micro pores during the chemical vapor infiltration (CVI) process, a calculation modeling of gas phase diffusion transport within micro pores was established. Taken CH 3SiCl 3 as precursor for depositing SiC as example, the diffusion coefficient, decomposing reaction rate, concentration within the reactor, and concentration distributing profiling of MTS within micro pore were accounted, respectively. The results indicate that, increasing the ratio of diffusion coefficient to decomposition rate constant of precursor MTS is propitious to decrease the densification gradient of parts, and decreasing the aspect ratio (L/D) of micro pore is favorable to make the concentration uniform within pores.展开更多
Risk analysis of chemical spills at sea and their consequences for sea environment are discussed. Mutual interactions between the process of the sea accident initiating events, the process of the sea environment threa...Risk analysis of chemical spills at sea and their consequences for sea environment are discussed. Mutual interactions between the process of the sea accident initiating events, the process of the sea environment threats, and the process of the sea environment degradation are investigated. To describe these three particular processes, the separate semi-Markov models are built. Furthermore, these models are jointed into one general model of these processes interactions. Moreover, some comments on the method for statistical identification of the considered models are proposed.展开更多
Anhydrous lutetium chloride, which is not easy to prepare in other ways, was prepared by chemical vapor transport (CVT) method. Lu2O3 reacted with Al2Cl6 at 300 degrees C to produce LuCl3, which was then separated fro...Anhydrous lutetium chloride, which is not easy to prepare in other ways, was prepared by chemical vapor transport (CVT) method. Lu2O3 reacted with Al2Cl6 at 300 degrees C to produce LuCl3, which was then separated from other solids by means of CVT at a temperature gradient from 400 degrees C to 180 degrees C. Residual Al2Cl6 was removed by dry Cl-2-N-2 gas at 200 degrees C. The purity of the product was > 99.9%.展开更多
文摘With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.
基金supported by the special fund for the basic research business of the central public welfare research institutes(TKS160222,TKS160211)the key technology projects of the transportation industry(TKS180403)+1 种基金the Tianjin Science and Technology Project(the project)(17YFZCSF01250)supported by National Natural Science Foundation of China(No.U1930402).
文摘Considering the accidents of ships for dangerous chemicals transportation in inland rivers,a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is proposed in this paper.Geographic information,such as rivers and buildings in the model,is obtained through Google Earth and structures of rivers and buildings are described by Auto CAD.In addition,the Fluent is adopted to simulate the leakage and diffusion processes of the dangerous chemicals where the standard k-εmodel is used to calculate the turbulent flow.Considering the interaction between chemicals and water,the VOF method is used to describe the leakage,drift and diffusion process of dangerous chemicals groups on the water surface.Taking a section of the Yangtze River as an example,the leakage and diffusion processes from a ship carrying 3,000 tons of low-solubility and low-volatile dangerous chemicals are studied,and the characteristics of leakage and diffusion are analyzed in detail.During the simulation,the area of the maximum group of leaked dangerous chemicals reaches up to about 1800 m2,and the number reaches up to 45.Furthermore,the influence of density,viscosity,water velocity and leakage velocity on the leakage and diffusion processes is investigated in this paper.
文摘In this paper the authors cite the aerosol samples collected with a KA-200 Anderson cascade Impactor and a KB-120 sampler during the first cruise of the Kuroshio investigation operated by the People's Republic of China and Japan cooperative program, from July 23 to August 21, 1987. The concentration size distributions and composition of marine aerosols over the Kuroshio area are analyzed. Neutron activation analysis is used to determine the elemental composition of the aerosols. The authors also discuss some characteristics of marine aerosols relating to long-range transport of crustal and anthropogenic elements from the continent to the remote ocean. Analytical results indicate that elements Al, Fe, Sc and Sb over this area are obviously influenced by the continent of Asia, and the size distributions are changed after long-range transport. The concentration of large particles increase. The concentrations of the elements C1 and Na are closely related to ocean conditions; the source of the elements Cl and Na is mainly the ocean. Besides coal combustion, the ocean is also a very important source for the element Se. The amount of Se is related to the distribution of marine life.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004156 and 11547172the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45
文摘The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices.
文摘Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, the physical and chemical properties of Earth’s constituents (e.g., silicate and carbonate minerals) are strongly affected by their immediate environment. In the past 30 years, there has been a tremendous amount of progress in both experimental techniques and theoretical modeling methods for material characterization under extreme conditions. These advancements have elevated our understanding of the properties of minerals, which is essential in order to achieve full comprehension of the formation of this planet and the origin of life on it. This article reviews recent computational techniques for predicting the behavior of materials under extreme conditions. This survey is limited to the application of the first-principles molecular dynamics (FPMD) method to the investigation of chemical and thermodynamic transport processes relevant to Earth Science.
基金Project(90405015) supported by the National Natural Science Foundation of China Project(50425208) supported by the National Young Elitists Foundation of China Project([2005]33) supported by Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC composites. Convection in preform was neglected in one model where momentum transport in preform is neglected and mass transport in preform is dominated by diffusion. Whereas convection in preform was taken into account in the other model where momentum transport in preform is represented by BRINKMAN equations and mass transport in preform includes both diffusion and convection. The integrated models were solved by finite element method. The calculation results show that convection in preform have negligible effect on both velocity distribution and concentration distribution. The difference between MTS molarities in preform of the two models is less than 5×10-5, which indicates that ignorance of convection in preform is reasonable and acceptable for numerical simulation of ICVI process of C/SiC composites.
基金supported by the Hong Kong Research Grants Council (Poly U5211/09E) and PolyU internal grant (G-U593)supported by the National Key Basic Research Development Program of China (Grant Nos.2010CB428503 and 2011CB403406)
文摘The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone (03) in the Pearl River Delta Region (PRD) was studied using numerical simulation. The aim of this study was to examine the volatile organic compound (VOC)- or nitrogen oxide (NO~ =NO+NO2)- limited conditions at present and when surface temperature is increasing due to global warming, thus to make recommendations for future ozone abatement policies for the PRD region. The model used for this application is the U.S. Environmental Protection Agency's (EPA's) third-generation air-quality modeling system; it consists of the mesoscale meteorological model MM5 and the chemical transport model named Community Multi-scale Air Quality (CMAQ). A series of sensitivity tests were conducted to assess the influence of VOC and NO~ variations on ozone production. Tropical cyclone was shown to be one of the important synoptic weather patterns leading to ozone pollution. The simulations were based on a tropical- cyclone-related episode that occurred during 14-16 September 2004. The results show that, in the future, the control strategy for emissions should be tightened. To reduce the current level of ozone to meet the Hong Kong Environmental Protection Department (EPD) air-quality objective (hourly average of 120 ppb), emphasis should be put on restricting the increase of NOx emissions. Furthermore, for a wide range of possible changes in precursor emissions, temperature increase will increase the ozone peak in the PRD region; the areas affected by photochemical smog are growing wider, but the locations of the ozone plume are rather invariant.
基金jointly supported by the National Key R&D Program of China(No.2018YFB1501802)the National Natural Science Foundation of China(No.41902309)funded by the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University。
文摘The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is thought to be an effective method to create fracture networks and open existing fractures in hot dry rocks by injecting chemical agents into the reservoir to dissolve the minerals. Granite is a common type of hot dry rock. In this paper, a series of chemical stimulation experiments were implemented using acid and alkaline agents under high temperature and pressure conditions that mimic the environment of formation. Granite rock samples used in the experiments are collected from the potential EGS reservoir in the Matouying area, Hebei, China. Laboratory experimental results show that the corrosion ratio per unit area of rock is 3.2% in static acid chemical experiments and 0.51% in static alkaline chemical experiments. The permeability of the core is increased by 1.62 times in dynamic acid chemical experiments and 2.45 times in dynamic alkaline chemical experiments. A scanning electron microscope analysis of the core illustrates that secondary minerals, such as chlorite, spherical silica, and montmorillonite, were formed, due to acid-rock interaction with plagioclase being precipitated by alkaline-rock interactions. Masking agents in alkaline chemical agents can slightly reduce the degree of plagioclase formation. A chemical simulation model was built using TOUGHREACT, the mineral dissolution and associated ion concentration variation being reproduced by this reactive transport model.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and U1930116)the Innovation-driven Plan in Central South University (Grant No. 2016CXS032)。
文摘High-quality large 1T phase of TiX_(2)(X = Te, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported A_(1g) and E_(8) modes, the rarely reported E_(u) mode(-83 cm^(-1) for TiTe_(2), and -185 cm^(-1)for TiS_(2)), and even the unexpected K mode(-85 cm^(-1)) of TiTe_(2). Most phonons harden with the decrease of temperature, except that the K mode of TiTe_(2) and the E_(u) and “A_(2u)/Sh” modes of TiS_(2) soften with the decrease of temperature. In addition, we also found phonon changes in TiSe_(2) that may be related to charge density wave phase transition. Our results on TiX_(2) phonons will help to understand their charge density wave and superconductivity.
文摘The transport of dangerous goods always represents a potential risk to life,human health,property,and environmental protection.For this reason and in order to preserve the lives and health of the participants in the transport process,adequate protection measures must be taken before,during,and after the transport of dangerous goods.Since the railway itself is a recipient of dangerous goods that are essential for its own operation,and is also a carrier of large quantities of various dangerous goods,these measures are of paramount importance.This paper examines,from a point of view of the protection of lives and health of the participants in the transport process and the safe transport of dangerous goods,the conditions of shipment and transport of dangerous goods,the obligations of the participants,and the essential ways for their proper handling.Proper application of safety at work prevents impromptu and indolent attitude in transporting dangerous goods,thus contributing to protection of people lives and health.Finally,this paper includes preventive measures and basic principles for implementation of safety at work in the transport of dangerous goods.
基金supported by the Ningbo S&T Innovation 2025 Major Special Program (2018B10055)the K.C. Wong Magna Fund in Ningbo University, China。
文摘Inorganic NiO_(x) based inverted structure perovskite solar cells (PSCs) is reported to be more stable than that with the organic hole transport materials.In this work,NiO_(x)/MAPbI_(3) interface chemical reaction induced instability of perovskite is unveiled:Ni^(3+) and I^(-) exhibit redox reactions and deprotonation of MA^(+) happens,which result in interface defects and perovskite lattice deformation.Thus the defective interface accelerates the degradation of perovskite by defect pathways from the bottom interface to the perovskite surface contacting H_(2)O/O_(2).Self-assembled interlayer of NH_(2)^(-)end silane on NiO_(x)separates the reactive NiO_(x)and MAPbI_(3),tunes the interface energy states by–NH_(2) end group.As a result,the PSC based on the silane treated NiO_(x)achieves enhanced PCE of 20.1%with decent stability under environmental and extreme conditions (high temperature,high humidity,light infiltration).Our work highlights the interface chemical problem induced PSC instability and a simple interface modification to achieve the stable PSCs.
文摘In the paper it has reviewed the monitoring of vehicles in the transport of hazardous substances based on the using of GPS/GSM technology. The basic principles of the GPS concept and hardware have been exhibited which are implemented in locating the vehicle. They have also identified the locating techniques underlying the monitoring process. It has presented an active system for monitoring parameters of the means of transport.
文摘ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.
基金supported by the National Natural Science Foundation of China (Grant No. 30470274)the Zhejiang Natural Science Foundation of China (Grant No. Y306087)the Zijin Program of Zhejiang University for Young Teachers, China.
文摘The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.
文摘The mutual separation characteristics were investigated for the neighboring Sm, Eu and Gd from their ternary oxide mixture Sm 2O 3 Eu 2O 3 Gd 2O 3 by a stepwise chlorination chemical vapor transport reaction within 6 h using AlCl 3 as complex former. The rare earth chlorides were more readily transported and concentrated in the middle temperature range of 980~1100 K and the transport efficiency was in the order of Sm≈Gd>Eu. The separation factor, expressed as molar ratio for the resulting chlorides, was 1 70 for Eu∶Sm, 1 88 for Eu∶Gd, 1 24 for Sm∶Gd in the higher temperature region, and 2 76 for Sm∶Eu, 2 83 for Gd∶Eu and 1 12 for Gd∶Sm in the lower temperature region, respectively. All results are much higher than those of the conventional wet process.
基金supported by the Program of International S&T Cooperation 2013DFA51050National Magnetic Confinement Fusion Science Program (2011GB112001)+2 种基金Science Foundation of Sichuan Province (2011JY0031, 2011JY0130)the financial support of the National Natural Science Foundation of China (No. 51271155, No. 51002125)the Fundamental Research Funds for the Central Universities (SWJTU12CX018)
文摘Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.
文摘In order to improve the uniformity of both the concentration of gaseous reagent and the deposition of matrix within micro pores during the chemical vapor infiltration (CVI) process, a calculation modeling of gas phase diffusion transport within micro pores was established. Taken CH 3SiCl 3 as precursor for depositing SiC as example, the diffusion coefficient, decomposing reaction rate, concentration within the reactor, and concentration distributing profiling of MTS within micro pore were accounted, respectively. The results indicate that, increasing the ratio of diffusion coefficient to decomposition rate constant of precursor MTS is propitious to decrease the densification gradient of parts, and decreasing the aspect ratio (L/D) of micro pore is favorable to make the concentration uniform within pores.
文摘Risk analysis of chemical spills at sea and their consequences for sea environment are discussed. Mutual interactions between the process of the sea accident initiating events, the process of the sea environment threats, and the process of the sea environment degradation are investigated. To describe these three particular processes, the separate semi-Markov models are built. Furthermore, these models are jointed into one general model of these processes interactions. Moreover, some comments on the method for statistical identification of the considered models are proposed.
文摘Anhydrous lutetium chloride, which is not easy to prepare in other ways, was prepared by chemical vapor transport (CVT) method. Lu2O3 reacted with Al2Cl6 at 300 degrees C to produce LuCl3, which was then separated from other solids by means of CVT at a temperature gradient from 400 degrees C to 180 degrees C. Residual Al2Cl6 was removed by dry Cl-2-N-2 gas at 200 degrees C. The purity of the product was > 99.9%.