Air-gap magnetic field modulation has been widely observed in electric machines.In this study,we present an analytical analysis and performance characterization of brushless doubly fed induction machines(BDFIMs)fed by...Air-gap magnetic field modulation has been widely observed in electric machines.In this study,we present an analytical analysis and performance characterization of brushless doubly fed induction machines(BDFIMs)fed by two independent converters from the perspective of air-gap field modulation.The spiral-loop winding is studied in detail as an example to show the generalized workflow that can also be used to analyze other short-circuited rotor winding types,such as nested-loop and multiphase double-layer windings.Magnetic field conversion factors are introduced to characterize the modulation behavior of special rotor windings and facilitate their comparison in terms of cross-coupling capability,average torque,and harmonic content of the air-gap flux density waveforms.The stator magnetomotive force(MMF),rotor MMF,and resultant air-gap MMF are considered,based on which the closed-form inductance formulas are derived,and the torque equation is obtained along with the optimal current angle for maximum torque operation by using the virtual work principle.The design equations are then developed for the initial sizing and geometry scaling of the BDFIMs.Transient finite element analysis and experimental measurements are performed to validate the analysis.展开更多
With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are inve...With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.展开更多
文摘Air-gap magnetic field modulation has been widely observed in electric machines.In this study,we present an analytical analysis and performance characterization of brushless doubly fed induction machines(BDFIMs)fed by two independent converters from the perspective of air-gap field modulation.The spiral-loop winding is studied in detail as an example to show the generalized workflow that can also be used to analyze other short-circuited rotor winding types,such as nested-loop and multiphase double-layer windings.Magnetic field conversion factors are introduced to characterize the modulation behavior of special rotor windings and facilitate their comparison in terms of cross-coupling capability,average torque,and harmonic content of the air-gap flux density waveforms.The stator magnetomotive force(MMF),rotor MMF,and resultant air-gap MMF are considered,based on which the closed-form inductance formulas are derived,and the torque equation is obtained along with the optimal current angle for maximum torque operation by using the virtual work principle.The design equations are then developed for the initial sizing and geometry scaling of the BDFIMs.Transient finite element analysis and experimental measurements are performed to validate the analysis.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.04AB30)
文摘With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.