The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o...The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.展开更多
This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assist...This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.展开更多
As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respo...As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.展开更多
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p...In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.展开更多
Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and inmemory computing(IMC),but there is a rising interest in using memristive technologies for security application...Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and inmemory computing(IMC),but there is a rising interest in using memristive technologies for security applications in the era of internet of things(IoT).In this review article,for achieving secure hardware systems in IoT,lowpower design techniques based on emerging memristive technology for hardware security primitives/systems are presented.By reviewing the state-of-the-art in three highlighted memristive application areas,i.e.memristive non-volatile memory,memristive reconfigurable logic computing and memristive artificial intelligent computing,their application-level impacts on the novel implementations of secret key generation,crypto functions and machine learning attacks are explored,respectively.For the low-power security applications in IoT,it is essential to understand how to best realize cryptographic circuitry using memristive circuitries,and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security.This review article aims to help researchers to explore security solutions,to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs.展开更多
Technology is expanding like a mushroom,there are various benefits of technology,in contrary users are facing serious losses by this technology.Furthermore,people lost their lives,their loved ones,brain-related diseas...Technology is expanding like a mushroom,there are various benefits of technology,in contrary users are facing serious losses by this technology.Furthermore,people lost their lives,their loved ones,brain-related diseases,etc.The industry is eager to get one technology that can secure their finance-related matters,personal videos or pictures,precious contact numbers,and their current location.Things are going worst because every software has some sort of legacy,deficiency,and shortcomings through which exploiters gain access to any software.There are various ways to get illegitimate access but on the top is Linux Kali with QRLjacker by user grabber command.This study recapitulates the impacts of the said technology and related avoidance.Detail contemplation depicts social media users like WhatsApp users can take a long sigh of relief when they will adopt the recommended methods.The problem is breaching of legitimate social media real-time location by an illegitimate user through Linux Kali,for this reason,end-user has no knowledge to spoof their IP to protect their real-time location.This paper will address the solution to the said problem.展开更多
The cloud boundary network environment is characterized by a passive defense strategy,discrete defense actions,and delayed defense feedback in the face of network attacks,ignoring the influence of the external environ...The cloud boundary network environment is characterized by a passive defense strategy,discrete defense actions,and delayed defense feedback in the face of network attacks,ignoring the influence of the external environment on defense decisions,thus resulting in poor defense effectiveness.Therefore,this paper proposes a cloud boundary network active defense model and decision method based on the reinforcement learning of intelligent agent,designs the network structure of the intelligent agent attack and defense game,and depicts the attack and defense game process of cloud boundary network;constructs the observation space and action space of reinforcement learning of intelligent agent in the non-complete information environment,and portrays the interaction process between intelligent agent and environment;establishes the reward mechanism based on the attack and defense gain,and encourage intelligent agents to learn more effective defense strategies.the designed active defense decision intelligent agent based on deep reinforcement learning can solve the problems of border dynamics,interaction lag,and control dispersion in the defense decision process of cloud boundary networks,and improve the autonomy and continuity of defense decisions.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
By applying to the theories and methodologies on informetrics,the authors collected the statistical data of relevant published articles,and then made some analysis including the prolific authors community,the long tai...By applying to the theories and methodologies on informetrics,the authors collected the statistical data of relevant published articles,and then made some analysis including the prolific authors community,the long tail distribution of authors,and the disciplinary distribution of the published articles.To conclude,some development trends and suggestions were put forward for the reference.展开更多
基金supported by Systematic Major Project of China State Railway Group Corporation Limited(Grant Number:P2023W002).
文摘The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.
文摘This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.
文摘As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.
基金This work was supported by National Natural Science Foundation of China(No.61971026)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.
基金supported by the DFG(German Research Foundation)Priority Program Nano Security,Project MemCrypto(Projektnummer 439827659/funding id DU 1896/2–1,PO 1220/15–1)the funding by the Fraunhofer Internal Programs under Grant No.Attract 600768。
文摘Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and inmemory computing(IMC),but there is a rising interest in using memristive technologies for security applications in the era of internet of things(IoT).In this review article,for achieving secure hardware systems in IoT,lowpower design techniques based on emerging memristive technology for hardware security primitives/systems are presented.By reviewing the state-of-the-art in three highlighted memristive application areas,i.e.memristive non-volatile memory,memristive reconfigurable logic computing and memristive artificial intelligent computing,their application-level impacts on the novel implementations of secret key generation,crypto functions and machine learning attacks are explored,respectively.For the low-power security applications in IoT,it is essential to understand how to best realize cryptographic circuitry using memristive circuitries,and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security.This review article aims to help researchers to explore security solutions,to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs.
文摘Technology is expanding like a mushroom,there are various benefits of technology,in contrary users are facing serious losses by this technology.Furthermore,people lost their lives,their loved ones,brain-related diseases,etc.The industry is eager to get one technology that can secure their finance-related matters,personal videos or pictures,precious contact numbers,and their current location.Things are going worst because every software has some sort of legacy,deficiency,and shortcomings through which exploiters gain access to any software.There are various ways to get illegitimate access but on the top is Linux Kali with QRLjacker by user grabber command.This study recapitulates the impacts of the said technology and related avoidance.Detail contemplation depicts social media users like WhatsApp users can take a long sigh of relief when they will adopt the recommended methods.The problem is breaching of legitimate social media real-time location by an illegitimate user through Linux Kali,for this reason,end-user has no knowledge to spoof their IP to protect their real-time location.This paper will address the solution to the said problem.
基金supported in part by the National Natural Science Foundation of China(62106053)the Guangxi Natural Science Foundation(2020GXNSFBA159042)+2 种基金Innovation Project of Guangxi Graduate Education(YCSW2023478)the Guangxi Education Department Program(2021KY0347)the Doctoral Fund of Guangxi University of Science and Technology(XiaoKe Bo19Z33)。
文摘The cloud boundary network environment is characterized by a passive defense strategy,discrete defense actions,and delayed defense feedback in the face of network attacks,ignoring the influence of the external environment on defense decisions,thus resulting in poor defense effectiveness.Therefore,this paper proposes a cloud boundary network active defense model and decision method based on the reinforcement learning of intelligent agent,designs the network structure of the intelligent agent attack and defense game,and depicts the attack and defense game process of cloud boundary network;constructs the observation space and action space of reinforcement learning of intelligent agent in the non-complete information environment,and portrays the interaction process between intelligent agent and environment;establishes the reward mechanism based on the attack and defense gain,and encourage intelligent agents to learn more effective defense strategies.the designed active defense decision intelligent agent based on deep reinforcement learning can solve the problems of border dynamics,interaction lag,and control dispersion in the defense decision process of cloud boundary networks,and improve the autonomy and continuity of defense decisions.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
文摘By applying to the theories and methodologies on informetrics,the authors collected the statistical data of relevant published articles,and then made some analysis including the prolific authors community,the long tail distribution of authors,and the disciplinary distribution of the published articles.To conclude,some development trends and suggestions were put forward for the reference.