The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, th...The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.展开更多
文摘The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.