In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system fo...In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems.展开更多
Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u...Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.展开更多
In the present paper,we consider the nonlocal Kirchhoff problem-(ε^2a+εb∫|■u|^2)Δu+u=Q(x)u^p,u>0 in R^3,,where a,b>0,1<p<5 andε>0 is a parameter.Under some assumptions on Q(x),we show the existenc...In the present paper,we consider the nonlocal Kirchhoff problem-(ε^2a+εb∫|■u|^2)Δu+u=Q(x)u^p,u>0 in R^3,,where a,b>0,1<p<5 andε>0 is a parameter.Under some assumptions on Q(x),we show the existence and local uniqueness of positive multi-peak solutions by LyapunovSchmidt reduction method and the local Pohozaev identity method,respectly.展开更多
In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases ...In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases where nonlinear terms may have sublinear growth. As an application, we obtain the uniqueness and the non-degeneracy of ground states for modified SchrSdinger equations.展开更多
In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coeffic...In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coefficient condition and its judging criterion as well as the righthand condition to ensure the existing solution uniquely.展开更多
We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform est...We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.展开更多
The solution of a nonlinear elliptic equation involving Pucci maximal operator and super linear nonlinearity is studied. Uniqueness results of positive radial solutions in the annulus with Dirichlet boundary condition...The solution of a nonlinear elliptic equation involving Pucci maximal operator and super linear nonlinearity is studied. Uniqueness results of positive radial solutions in the annulus with Dirichlet boundary condition are obtained. The main tool is Lane-Emden transformation and Koffman type analysis. This is a generalization of the corresponding classical results involving Laplace operator.展开更多
The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the sec...The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.展开更多
This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uni...This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.展开更多
In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum...In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.展开更多
In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in ste...In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.展开更多
In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spac...In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].展开更多
A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This appr...A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.展开更多
Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations ...Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
In this paper, we establish the global existence of the solution for the Landau-Lifshitz equation of the ferromagnetic spin chain. By Galerkin method, we first show the existence of the local solution for this equatio...In this paper, we establish the global existence of the solution for the Landau-Lifshitz equation of the ferromagnetic spin chain. By Galerkin method, we first show the existence of the local solution for this equation, and then by a priori estimates method, we extend the local solution to a global solution.展开更多
We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that th...We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that there is a global strong solution and is unique for the 2D Cauchy problem with the initial density which can allow vacuum conditions and even have compact support. Besides, the large time decay rates of the gradients of velocity, temperature and pressure can also be obtained which are also the same as those of the homogeneous case.展开更多
In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness...In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness and stability of C'-solutions ofthe iterated equation (*) and also there is a proved theorem for the continuous dependence of Cr-solutions of iterated equation (*) on the given function.展开更多
文摘In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems.
文摘Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.
基金supported by Natural Science Foundation of China(11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT 17R46financially supported by funding for basic research business in Central Universities(innovative funding projects)(2018CXZZ090)。
文摘In the present paper,we consider the nonlocal Kirchhoff problem-(ε^2a+εb∫|■u|^2)Δu+u=Q(x)u^p,u>0 in R^3,,where a,b>0,1<p<5 andε>0 is a parameter.Under some assumptions on Q(x),we show the existence and local uniqueness of positive multi-peak solutions by LyapunovSchmidt reduction method and the local Pohozaev identity method,respectly.
基金supported by JSPS Grant-in-Aid for Scientific Research(C)(15K04970)
文摘In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases where nonlinear terms may have sublinear growth. As an application, we obtain the uniqueness and the non-degeneracy of ground states for modified SchrSdinger equations.
基金Supported by the national natural science foundation.
文摘In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coefficient condition and its judging criterion as well as the righthand condition to ensure the existing solution uniquely.
文摘We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.
文摘The solution of a nonlinear elliptic equation involving Pucci maximal operator and super linear nonlinearity is studied. Uniqueness results of positive radial solutions in the annulus with Dirichlet boundary condition are obtained. The main tool is Lane-Emden transformation and Koffman type analysis. This is a generalization of the corresponding classical results involving Laplace operator.
基金theResearchFoundationofEducationalCommitteeofYunnanProvince China
文摘The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.
文摘This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.
基金partially supported by the National Natural Science Foundation of China (11671273 and 11931010)key research project of the Academy for Multidisciplinary Studies of CNU and Beijing Natural Science Foundation (1192001).
文摘In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.
基金Foundation item: Hubei University Youngth Foundations (099206).
文摘In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
基金This work is supported by the National Science Foundation of China.
文摘In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].
文摘A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.
文摘Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
文摘In this paper, we establish the global existence of the solution for the Landau-Lifshitz equation of the ferromagnetic spin chain. By Galerkin method, we first show the existence of the local solution for this equation, and then by a priori estimates method, we extend the local solution to a global solution.
文摘We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that there is a global strong solution and is unique for the 2D Cauchy problem with the initial density which can allow vacuum conditions and even have compact support. Besides, the large time decay rates of the gradients of velocity, temperature and pressure can also be obtained which are also the same as those of the homogeneous case.
文摘In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness and stability of C'-solutions ofthe iterated equation (*) and also there is a proved theorem for the continuous dependence of Cr-solutions of iterated equation (*) on the given function.