In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If the...In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).展开更多
In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit posit...In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p.展开更多
Let Mn be a closed spacelike submanifold isometrically immersed in de Sitter space S^n+p _p(c).Denote by R,H and S the normalized scalar curvature,the mean curvature and the square of the length of the second fundamen...Let Mn be a closed spacelike submanifold isometrically immersed in de Sitter space S^n+p _p(c).Denote by R,H and S the normalized scalar curvature,the mean curvature and the square of the length of the second fundamental form of Mn,respectively.Suppose R is constant and R≤c. The pinching problem on S is studied and a rigidity theorem for Mn immersed in ~S^n+p _p(c) with parallel normalized mean curvature vector field is proved.When n≥3, the pinching constant is the best.Thus,the mistake of the paper “Space-like hypersurfaces in de Sitter space with constant scalar curvature”(see Manus Math,1998,95:499-505) is corrected.Moreover,the reduction of the codimension when Mn is a complete submanifold in S^n+p _p(c) with parallel normalized mean curvature vector field is investigated.展开更多
We study the global umbilic submanifolds with parallel mean curvature vector fields in a Riemannian manifold with quasi constant curvature and get a local pinching theorem about the length of the second fundamental form.
We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi.
Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form ...Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered.展开更多
The para-Blaschke tensor are extended in this paper from hypersurfaces to general higher codimensional submanifolds in the unit sphere S^(n),which is invariant under the Mobius transformations on Sn.Then some typical ...The para-Blaschke tensor are extended in this paper from hypersurfaces to general higher codimensional submanifolds in the unit sphere S^(n),which is invariant under the Mobius transformations on Sn.Then some typical new examples of umbilic-free submanifolds in Snwith vanishing Mobius form and a parallel para-Blaschke tensor of two distinct eigenvalues,D_(1) and D_(2),are constructed.The main theorem of this paper is a simple characterization of these newly found examples in terms of the eigenvalues D_(1) and D_(2).展开更多
文摘In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).
基金supported by the National Natural Science Foundation of China(11531012,12071424,12171423)the Scientific Research Project of Shaoxing University(2021LG016)。
文摘In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p.
文摘Let Mn be a closed spacelike submanifold isometrically immersed in de Sitter space S^n+p _p(c).Denote by R,H and S the normalized scalar curvature,the mean curvature and the square of the length of the second fundamental form of Mn,respectively.Suppose R is constant and R≤c. The pinching problem on S is studied and a rigidity theorem for Mn immersed in ~S^n+p _p(c) with parallel normalized mean curvature vector field is proved.When n≥3, the pinching constant is the best.Thus,the mistake of the paper “Space-like hypersurfaces in de Sitter space with constant scalar curvature”(see Manus Math,1998,95:499-505) is corrected.Moreover,the reduction of the codimension when Mn is a complete submanifold in S^n+p _p(c) with parallel normalized mean curvature vector field is investigated.
基金Supported by the Directing Research Subject of Jiangsu Education Bureau(03103146)
文摘We study the global umbilic submanifolds with parallel mean curvature vector fields in a Riemannian manifold with quasi constant curvature and get a local pinching theorem about the length of the second fundamental form.
文摘We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi.
文摘Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered.
基金Supported by Foundation of Natural Sciences of China(Grant Nos.11671121,11871197,11431009)。
文摘The para-Blaschke tensor are extended in this paper from hypersurfaces to general higher codimensional submanifolds in the unit sphere S^(n),which is invariant under the Mobius transformations on Sn.Then some typical new examples of umbilic-free submanifolds in Snwith vanishing Mobius form and a parallel para-Blaschke tensor of two distinct eigenvalues,D_(1) and D_(2),are constructed.The main theorem of this paper is a simple characterization of these newly found examples in terms of the eigenvalues D_(1) and D_(2).