Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedi...The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedimentology,seismic sections,and well logs.The Sab'atayn Formation(Tithonian age)is represented by a series of clastic and evaporites that were deposited under fluvio-deltaic to prodeltaic settings.It is divided into four members including Yah(at the base),upwards to Seen,Alif,and Safir at the top.Two third-order depositional sequences were determined for the Tithonian succession which were separated by three sequence boundaries.These sequences were classified into their systems tracts signifying several sedimentation patterns of progradational,aggradational,and retrogradational parasequence sets.The first depositional sequence corresponds to the early-middle Tithonian Yah and Seen units that can be classified into lowstand,transgressive,and highstand systems tracts.The second sequence comprises the late Tithonian Alif unit that can be subdivided into transgressive and highstand systems tracts.The sandy deposits of the Alif Member(highstand deposits)represent the most productive hydrocarbon reservoir in the basin.The Upper Jurassic sediments in the study area were resulted from a combination of eustatic and tectonic effects.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and densit...Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.展开更多
Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and res...Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.展开更多
Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magneti...Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established.展开更多
Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakth...Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakthrough in deep nature gas prospecting in Songliao basin. The deep natural gas entrapment regularity is discussed in the paper by the study of deep strata, structure and reservoir. Andesite, rhyolite and little pyroclastic rock are the main reservoirs. There are two types of volcanic reservoir space assemblage in this area: the pore and fissure and the pure fissure. Changes had taken place for volcanic reservoir space during long geologic time, which was controlled by tectonic movement and geologic environment. The developed degree of reservoir space was controlled by tectonic movement, weathering and filtering, corrosion and Filling. There are three types of source-reservoir-caprock assemblage in this area: lower source- upper reservoir model, upper source-lower reservoir model and lateral change model. Mudstone in Dengluoku formation and the compacted volcanic rock of upper Jurassic-lower Cretaceous are the caprock for deep gas reservoirs. Dark mudstone of deep lacustrine facies in Shahezi formation and lower part of Dengluoku formation are the source rock of deep gas. It can be concluded that deep gas pools are mainly volcanic lithologic reservoirs.展开更多
Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in ...Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in Sichuan Basin are studied. The study shows that central volcanic eruptive facies are developed in Sichuan Basin, and their lithological assemblages and distribution characteristics show obvious differences. The igneous rocks are mainly distributed in three regions: the southwestern part of the basin has dominantly largescale overflow facies basalts; the central and western part of the basin, Jianyang-Santai area, develop intrusive rocks, volcanic lavas(basalts)and pyroclastic rocks; and the eastern part of Sichuan, Dazhou-Liangping area, only develop diabase and basalts. Five aspects of understandings are achieved:(1) The Upper Permian igneous rocks can be divided into intrusive rocks and extrusive rocks, with the extrusive rocks as the main body. The chemical compositions of the extrusive rocks are characterized by both alkaline basalt and tholeiitic basalt, and belong to the subalkaline type of transitional basalt magma eruption.(2) There are obvious rhythmic structures vertically among overflow facies basalt, and the single rhythmic layer consists of, from bottom up, pyroclastic rocks(undeveloped), gray and dark gray porphyritic basalts(unstable), dark gray and purple microcrystalline-cryptocrystalline basalts, dark greyish green porous and amygdaloid basalts; the central volcanic eruption shows the rhythm and the vertical sequence of volcanic clastic rocks(agglomerates and breccias), volcanic lava, tuffaceous lava from bottom to top.(3) The pore types of basalt and pyroclastic rocks are diverse, mainly dissolution pore and de-vitrification micropore, but their physical properties are different. Basalt is characterized by ultra-low pore permeability, small reservoir thickness, and reservoirs are distributed in the upper and middle parts of the cycle, with poor lateral comparability. Volcanic clastic rocks are medium to high porous reservoirs(Well YT1: porosity: 8.66%?16.48%, average 13.76%) with large thickness and good reservoir quality.(4) Natural gas in basalts in southwestern basin mainly comes from Middle Permian, and natural gas in volcanic clastic rocks in central and western basin comes from Cambrian Qiongzhusi Formation.(5) Analysis of igneous reservoir-forming conditions in different areas shows that there are relatively insufficient gas sources and great differences in preservation conditions in southwestern basin.Reservoirs are poorly developed and gas-bearing is complex. The Jianyang-Santai area in the central and western part of Sichuan Basin has abundant hydrocarbon sources, developed reservoir, favorable preservation conditions and favorable gas geological conditions, and it is a favorable area for gas exploration.展开更多
The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were in...The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones.The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system.Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage.Reservoir quality was controlled by fault systems,microfacies,burial-thermal history,diagenesis,hydrocarbon charging events(HCE),and abnormally high pressure.Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration.Sandstones developed in the high energy settings such as overwater(ODC)and underwater distributary channels(UDC)provide the material foundation for reservoirs.Moderate burial depth(3000-4000 m),moderate geothermal field(2.7-3.2℃/100 m),and late HCE(later than E3)represent the important factors to protect and improve pore volume.Meteoric freshwater with high concentrations of CO_(2)and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar,rock fragments,calcite and anhydrite cements.Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs.Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores,allowing them to be better preserved.A reservoir quality evaluation model with bidirectional migration pathways,rich in clay minerals,poor in cements,superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC finegrained sandstones.This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.展开更多
The results of integrated sedimentology,petrography,and petrophysical study of the Upper Devonian(Middle Famennian)Dankovo-Lebedyansky carbonates from Southeast Tatarstan of the Volga-Ural Basin revealed a variety of ...The results of integrated sedimentology,petrography,and petrophysical study of the Upper Devonian(Middle Famennian)Dankovo-Lebedyansky carbonates from Southeast Tatarstan of the Volga-Ural Basin revealed a variety of microfacies and diagenetic events that impacted the reservoir quality.Although our earlier study documented microfacies analysis and depositional environments,none of the studies focused on diagenesis,microfacies interaction,and their controls on the studied sediment's reservoir quality.Based on petrographic and microfacies analyses,the seven identified microfacies types are peloidal grainstone MF 1,cemented bioclastic peloidal grainstone MF 2,echinoderm-concentrated packstone MF 3,algae packstone MF 4,bioclastic wackestone MF 5,whole-fossil wackestone MF 6,and dolomite MF 7.For the investigated sediments,a gently deepening carbonate ramp depositional model with an inner,middle,and outer ramp setting is proposed.The observed diagenetic events in this study include micritization,calcite cementation(six cement types),dolomitization(six dolomite types),dissolution(fabric and non-fabric-selective dissolution),compaction,and microfracturing.The identified microfacies were classified into three distinct classes based on their petrophysical characteristics.MF 1 and MF 7 are microfacies types with the best reservoir quality.MF 3 and MF 4 are microfacies types of moderate reservoir quality.MF 2,MF 5,and MF 6 are microfacies types with poor or non-reservoir quality.Calcite cementation,micritization,and compaction are the primary diagenetic modifications responsible for porosity reduction.Moldic pores created by dissolution are a significant porosityimproving process.Porosity is locally enhanced by stylolite and microfractures.Dolomitization improved reservoir quality by creating intercrystalline and vuggy porosity.Understanding the impact of microfacies and diagenesis on reservoir quality is crucial for understanding reservoir properties in nearby fields with similar settings.展开更多
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
文摘The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedimentology,seismic sections,and well logs.The Sab'atayn Formation(Tithonian age)is represented by a series of clastic and evaporites that were deposited under fluvio-deltaic to prodeltaic settings.It is divided into four members including Yah(at the base),upwards to Seen,Alif,and Safir at the top.Two third-order depositional sequences were determined for the Tithonian succession which were separated by three sequence boundaries.These sequences were classified into their systems tracts signifying several sedimentation patterns of progradational,aggradational,and retrogradational parasequence sets.The first depositional sequence corresponds to the early-middle Tithonian Yah and Seen units that can be classified into lowstand,transgressive,and highstand systems tracts.The second sequence comprises the late Tithonian Alif unit that can be subdivided into transgressive and highstand systems tracts.The sandy deposits of the Alif Member(highstand deposits)represent the most productive hydrocarbon reservoir in the basin.The Upper Jurassic sediments in the study area were resulted from a combination of eustatic and tectonic effects.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金sponsored by the key lab.program of Shaanxi Province (08JZ04)the key discipline fund for scientific research program of Baoji University of Arts and Science (ZK0796)the key discipline fund for natural geography of Shaanxi Province in Baoji University of Arts and Science
文摘Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.
基金Supported by the China National Science and Technology Major Project(2017ZX05035-001)。
文摘Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.
基金Supported by the Petro China-Southwest Petroleum University Innovation Consortium Project(2020CX020104)Higher Education Innovative Talents Program(Plan 111)(D18016)Sichuan Collaborative Innovation Center for Shale Gas Resources and Environment SEC-2018-03)。
文摘Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established.
文摘Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakthrough in deep nature gas prospecting in Songliao basin. The deep natural gas entrapment regularity is discussed in the paper by the study of deep strata, structure and reservoir. Andesite, rhyolite and little pyroclastic rock are the main reservoirs. There are two types of volcanic reservoir space assemblage in this area: the pore and fissure and the pure fissure. Changes had taken place for volcanic reservoir space during long geologic time, which was controlled by tectonic movement and geologic environment. The developed degree of reservoir space was controlled by tectonic movement, weathering and filtering, corrosion and Filling. There are three types of source-reservoir-caprock assemblage in this area: lower source- upper reservoir model, upper source-lower reservoir model and lateral change model. Mudstone in Dengluoku formation and the compacted volcanic rock of upper Jurassic-lower Cretaceous are the caprock for deep gas reservoirs. Dark mudstone of deep lacustrine facies in Shahezi formation and lower part of Dengluoku formation are the source rock of deep gas. It can be concluded that deep gas pools are mainly volcanic lithologic reservoirs.
基金Supported by the Petrochina Science and Technology Project(2016E-0601)
文摘Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in Sichuan Basin are studied. The study shows that central volcanic eruptive facies are developed in Sichuan Basin, and their lithological assemblages and distribution characteristics show obvious differences. The igneous rocks are mainly distributed in three regions: the southwestern part of the basin has dominantly largescale overflow facies basalts; the central and western part of the basin, Jianyang-Santai area, develop intrusive rocks, volcanic lavas(basalts)and pyroclastic rocks; and the eastern part of Sichuan, Dazhou-Liangping area, only develop diabase and basalts. Five aspects of understandings are achieved:(1) The Upper Permian igneous rocks can be divided into intrusive rocks and extrusive rocks, with the extrusive rocks as the main body. The chemical compositions of the extrusive rocks are characterized by both alkaline basalt and tholeiitic basalt, and belong to the subalkaline type of transitional basalt magma eruption.(2) There are obvious rhythmic structures vertically among overflow facies basalt, and the single rhythmic layer consists of, from bottom up, pyroclastic rocks(undeveloped), gray and dark gray porphyritic basalts(unstable), dark gray and purple microcrystalline-cryptocrystalline basalts, dark greyish green porous and amygdaloid basalts; the central volcanic eruption shows the rhythm and the vertical sequence of volcanic clastic rocks(agglomerates and breccias), volcanic lava, tuffaceous lava from bottom to top.(3) The pore types of basalt and pyroclastic rocks are diverse, mainly dissolution pore and de-vitrification micropore, but their physical properties are different. Basalt is characterized by ultra-low pore permeability, small reservoir thickness, and reservoirs are distributed in the upper and middle parts of the cycle, with poor lateral comparability. Volcanic clastic rocks are medium to high porous reservoirs(Well YT1: porosity: 8.66%?16.48%, average 13.76%) with large thickness and good reservoir quality.(4) Natural gas in basalts in southwestern basin mainly comes from Middle Permian, and natural gas in volcanic clastic rocks in central and western basin comes from Cambrian Qiongzhusi Formation.(5) Analysis of igneous reservoir-forming conditions in different areas shows that there are relatively insufficient gas sources and great differences in preservation conditions in southwestern basin.Reservoirs are poorly developed and gas-bearing is complex. The Jianyang-Santai area in the central and western part of Sichuan Basin has abundant hydrocarbon sources, developed reservoir, favorable preservation conditions and favorable gas geological conditions, and it is a favorable area for gas exploration.
基金supported by the National Major Science and Technology Projects of China(No.2016ZX05033-001002)the National Natural Science Foundation of China(No.41272155)the China Scholarship Council。
文摘The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones.The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system.Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage.Reservoir quality was controlled by fault systems,microfacies,burial-thermal history,diagenesis,hydrocarbon charging events(HCE),and abnormally high pressure.Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration.Sandstones developed in the high energy settings such as overwater(ODC)and underwater distributary channels(UDC)provide the material foundation for reservoirs.Moderate burial depth(3000-4000 m),moderate geothermal field(2.7-3.2℃/100 m),and late HCE(later than E3)represent the important factors to protect and improve pore volume.Meteoric freshwater with high concentrations of CO_(2)and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar,rock fragments,calcite and anhydrite cements.Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs.Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores,allowing them to be better preserved.A reservoir quality evaluation model with bidirectional migration pathways,rich in clay minerals,poor in cements,superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC finegrained sandstones.This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under agreement No.075-15-2022-299 within the framework of the development program for a world-class Research Center“Efficient development of the global liquid hydrocarbon reserves”.
文摘The results of integrated sedimentology,petrography,and petrophysical study of the Upper Devonian(Middle Famennian)Dankovo-Lebedyansky carbonates from Southeast Tatarstan of the Volga-Ural Basin revealed a variety of microfacies and diagenetic events that impacted the reservoir quality.Although our earlier study documented microfacies analysis and depositional environments,none of the studies focused on diagenesis,microfacies interaction,and their controls on the studied sediment's reservoir quality.Based on petrographic and microfacies analyses,the seven identified microfacies types are peloidal grainstone MF 1,cemented bioclastic peloidal grainstone MF 2,echinoderm-concentrated packstone MF 3,algae packstone MF 4,bioclastic wackestone MF 5,whole-fossil wackestone MF 6,and dolomite MF 7.For the investigated sediments,a gently deepening carbonate ramp depositional model with an inner,middle,and outer ramp setting is proposed.The observed diagenetic events in this study include micritization,calcite cementation(six cement types),dolomitization(six dolomite types),dissolution(fabric and non-fabric-selective dissolution),compaction,and microfracturing.The identified microfacies were classified into three distinct classes based on their petrophysical characteristics.MF 1 and MF 7 are microfacies types with the best reservoir quality.MF 3 and MF 4 are microfacies types of moderate reservoir quality.MF 2,MF 5,and MF 6 are microfacies types with poor or non-reservoir quality.Calcite cementation,micritization,and compaction are the primary diagenetic modifications responsible for porosity reduction.Moldic pores created by dissolution are a significant porosityimproving process.Porosity is locally enhanced by stylolite and microfractures.Dolomitization improved reservoir quality by creating intercrystalline and vuggy porosity.Understanding the impact of microfacies and diagenesis on reservoir quality is crucial for understanding reservoir properties in nearby fields with similar settings.