Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng For...Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in the Sichuan Basin and its surrounding areas and the relationship between these key interfaces with the deposition of organic-rich shale have been examined systematically. The Wufeng Formation-Longmaxi Formation has four types of marker beds with interface attributes, namely, the characteristic graptolite belt, Guanyinqiao Member shell layer, section with dense bentonite layers, and concretion section, which can be taken as key interfaces for stratigraphic division and correlation of the graptolite shale. The shell layer in Guanyinqiao Member is the most standard key interface in Wufeng Formation-Longmaxi Formation, and can also be regarded as an important indicator for judging the depositional scale of organic-rich shale in key areas. There are 8 dense bentonite sections of two types mainly occurring in 7 graptolite belts in these formations. They have similar interface characteristics with the shell layer in Guanyinqiao Member in thickness and natural gamma response, and belong to tectonic interfaces(i.e., event deposits). They have three kinds of distribution scales: whole region, large part of the region, and local part, and can be the third, fourth and fifth order sequence interfaces, and have a differential control effect on organic-rich shale deposits. The horizon the characteristic graptolite belt occurs first is the isochronous interface, which is not directly related to the deposition of organic-rich shale. Concretions only appear in local areas, and show poor stability in vertical and horizontal directions, and have no obvious relationship with the deposition of the organic-rich shale.展开更多
The gravity flow deposit were mainly developed in the lowstand systems tract(LST) of the first member of Upper Miocene Huangliu Formation(Ehl1) in Dongfang area, Yinggehai Basin, has become a valuable target for g...The gravity flow deposit were mainly developed in the lowstand systems tract(LST) of the first member of Upper Miocene Huangliu Formation(Ehl1) in Dongfang area, Yinggehai Basin, has become a valuable target for gas exploration and production. The gravity flow sedimentary characteristics of lithofacies associations, sedimentary texture, seismic facies and logging facies were described in detail on the basis of integrated analysis of cores, logging and seismic data. The sedimentary microfacies types composed of neritic sandbar, continental shelf mud, main channel, bifurcated or cross-cutting distributary channel, overspill, and natural levee are revealed under the constraint of high resolution sequence stratigraphic framework in the Ehl1. The gravity flow deposit system in the LST is divided into three evolution stages corresponding to periods of three parasequence sets. The gravity flow deposit was induced in the early LST, expanded rapidly in the middle LST and decreased slightly in the late LST. But its developing scale decreased sharply in the transgression systems tract(TST) and finally vanished in the highstand systems tract(HST). This spatial evolution rule is constrained by the integrated function of sediments supply of the Vietnam Blue River in the LST, the development of local gradient change in sea floor(micro-topography, i.e., flexure slope break), and the fall in relative sea level. On the basics of the deep study of the coupling relationship among the three main control factors, the sedimentary model is established as an optimal component of "source-channel-sink" for shallow marine turbidite submarine fan.展开更多
Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Sha...Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Shahejie Formation in Dongying depression are taken as an example to study the space-time evolution and controlling factor of FGS in this paper. Based on the analysis of well cores, thin sections, inorganic and organic geochemistry indicators, FGR are divided into 7 types of lithofacies. Through the study of ‘point-line-plane', this study shows that FGS has the characteristics of rhythum, diversity and succession. The first stage is characterized by clayey FGS(massive claystone). The second stage is characterized by carbonate FGS(low-TOC laminated limestone) and dolomitic FGS(dolomitic-silty shale) formed by transgression. The third stage is characterized by organic-rich carbonate FGS(middle/high-TOC laminated limestone) distributed in cycle. The fourth stage is characterized by FGS mixed carbonate and siliciclastic sediments(calcareous-silty shale). A variety of space-time evolution of FGS are controlled by multiple factors including tectonism, climate and lake conditions.展开更多
基金Supported by the PetroChina Science and Technology Project(2021DJ1904)PetroChina Exploration and Production Company Marine Shale Gas Selection Project(kt2018-01-06)。
文摘Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in the Sichuan Basin and its surrounding areas and the relationship between these key interfaces with the deposition of organic-rich shale have been examined systematically. The Wufeng Formation-Longmaxi Formation has four types of marker beds with interface attributes, namely, the characteristic graptolite belt, Guanyinqiao Member shell layer, section with dense bentonite layers, and concretion section, which can be taken as key interfaces for stratigraphic division and correlation of the graptolite shale. The shell layer in Guanyinqiao Member is the most standard key interface in Wufeng Formation-Longmaxi Formation, and can also be regarded as an important indicator for judging the depositional scale of organic-rich shale in key areas. There are 8 dense bentonite sections of two types mainly occurring in 7 graptolite belts in these formations. They have similar interface characteristics with the shell layer in Guanyinqiao Member in thickness and natural gamma response, and belong to tectonic interfaces(i.e., event deposits). They have three kinds of distribution scales: whole region, large part of the region, and local part, and can be the third, fourth and fifth order sequence interfaces, and have a differential control effect on organic-rich shale deposits. The horizon the characteristic graptolite belt occurs first is the isochronous interface, which is not directly related to the deposition of organic-rich shale. Concretions only appear in local areas, and show poor stability in vertical and horizontal directions, and have no obvious relationship with the deposition of the organic-rich shale.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos. 41272122, 41202074, 41172123 and 40702023)the National Twelfth Five-Year Major Projects of Oil and Gas (No. 2011ZX05025-002-02-02)+1 种基金the Key Laboratory of Tectonics and Petroleum Resources (CUG)of Ministry of Education open issue (No. TPR-2013-08)the China University of Geosciences (Wuhan) Teaching Labor atory open funded projects
文摘The gravity flow deposit were mainly developed in the lowstand systems tract(LST) of the first member of Upper Miocene Huangliu Formation(Ehl1) in Dongfang area, Yinggehai Basin, has become a valuable target for gas exploration and production. The gravity flow sedimentary characteristics of lithofacies associations, sedimentary texture, seismic facies and logging facies were described in detail on the basis of integrated analysis of cores, logging and seismic data. The sedimentary microfacies types composed of neritic sandbar, continental shelf mud, main channel, bifurcated or cross-cutting distributary channel, overspill, and natural levee are revealed under the constraint of high resolution sequence stratigraphic framework in the Ehl1. The gravity flow deposit system in the LST is divided into three evolution stages corresponding to periods of three parasequence sets. The gravity flow deposit was induced in the early LST, expanded rapidly in the middle LST and decreased slightly in the late LST. But its developing scale decreased sharply in the transgression systems tract(TST) and finally vanished in the highstand systems tract(HST). This spatial evolution rule is constrained by the integrated function of sediments supply of the Vietnam Blue River in the LST, the development of local gradient change in sea floor(micro-topography, i.e., flexure slope break), and the fall in relative sea level. On the basics of the deep study of the coupling relationship among the three main control factors, the sedimentary model is established as an optimal component of "source-channel-sink" for shallow marine turbidite submarine fan.
基金supported by the National Science and Technology Special Grant of China (No. 2017zx05036-004)
文摘Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Shahejie Formation in Dongying depression are taken as an example to study the space-time evolution and controlling factor of FGS in this paper. Based on the analysis of well cores, thin sections, inorganic and organic geochemistry indicators, FGR are divided into 7 types of lithofacies. Through the study of ‘point-line-plane', this study shows that FGS has the characteristics of rhythum, diversity and succession. The first stage is characterized by clayey FGS(massive claystone). The second stage is characterized by carbonate FGS(low-TOC laminated limestone) and dolomitic FGS(dolomitic-silty shale) formed by transgression. The third stage is characterized by organic-rich carbonate FGS(middle/high-TOC laminated limestone) distributed in cycle. The fourth stage is characterized by FGS mixed carbonate and siliciclastic sediments(calcareous-silty shale). A variety of space-time evolution of FGS are controlled by multiple factors including tectonism, climate and lake conditions.