Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at ...Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.展开更多
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi...The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions ...The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.展开更多
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str...Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).展开更多
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ...Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.展开更多
The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed...The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97).展开更多
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ...The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.展开更多
The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)enviro...The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.展开更多
The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of...The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value.展开更多
Jiama is a giant,high-grade porphyry copper system in the Gangdese metallogenic belt,Tibet.Multistage intermediate-felsic porphyries intruded in this deposit,some of which are strongly associated with copper-polymetal...Jiama is a giant,high-grade porphyry copper system in the Gangdese metallogenic belt,Tibet.Multistage intermediate-felsic porphyries intruded in this deposit,some of which are strongly associated with copper-polymetallic mineralization.These ore-bearing porphyries include monzogranite,granodiorite,and quartz diorite porphyries.A new granite aplite dyke was found in the south of Jiama.Its age,genesis,and relationship with ore-related magmatism are obscure.Here,its emplacement age and petrogenesis were determined using mineralogy,zircon U-Pb dating,geochemistry,and Sr-Nd-Pb isotope studies.The zircon LA-ICP-MS U-Pb age of the aplite dyke is 16.66±0.21 Ma(n=14,MSWD=0.66),earlier than that of the ore-bearing porphyries(~15 Ma)in Jiama.Furthermore,the aplite exhibits high amounts of silicon(SiO_(2)=73.39%-74.74%),potassium(K_(2)O=5.12%-6.61%),aluminum(Al_(2)O_(3)=14.25%-14.69%),and light/heavy rare earth elements(LREE/HREE=12.12-16.19)as well as negative europium(δEu=0.47-0.72)and weak negative cerium anomalies(δCe=0.84-0.93).The aplite dyke is characteristic of metaluminous-peraluminous I-type granite,which is rich in large-ion lithophile elements(Rb,Ba,Th and U)and depleted in high-field-strength elements(Nb,P and Ti).The aplite dyke and ore-bearing porphyries in the Jiama deposit are the results of a partial melting of the juvenile lower crust,according to whole-rock geochemistry and Sr-Nd-Pb isotope data,but the dyke and ore-bearing porphyries were emplaced from the same magma chamber at different times.Thus,the aplite dyke shows the composition of the early evolution stage of shallow magma in the Jiama deposit and is the product of rapid condensation and crystallization.展开更多
Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little ...Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.展开更多
Tonstein layers are found worldwide in the Permo-Carboniferous coal-bearing strata.This study investigates the geochronology,mineralogy,and geochemistry of four tonstein samples from the Permo-Carboniferous Benxi Form...Tonstein layers are found worldwide in the Permo-Carboniferous coal-bearing strata.This study investigates the geochronology,mineralogy,and geochemistry of four tonstein samples from the Permo-Carboniferous Benxi Formation,Ordos Basin,North China Craton(NCC).The typical features of the studied tonsteins include thin beds,lateral continuity,angular quartz grains,and euhedral zircons with similar U-Pb ages,indicating a significant pyroclastic origin.In addition,the tonstein samples have low TiO_(2)/Al_(2)O_(3)ratios(<0.02)and rare earth elements and yttrium(REY)concentrations with obvious negative Eu anomalies,indicating that the tonsteins have a felsic magma origin.Moreover,compared with the mean composition of clay shale,the studied tonsteins are characterized by high concentrations of the elements Nb and Ta,which may affect the concentration of the corresponding elements in surrounding coal seams.The zircon U-Pb ages of the tonsteins(293.9-298.8 Ma)provide a precise chronological framework on the Benxi Formation in the Ordos Basin,constraining the Gzhelian-Aselian stages.The tonsteins were probably sourced from arc volcanism along the western margin of the NCC during the early Permian,implying that the Alxa Terrane had not amalgamated with the NCC at that time.展开更多
The effect of various depositional parameters including paleoclimate,paleosalinity and provenance,on the depositional mechanism of lacustrine shale is very important in reconstructing the depositional environment.The ...The effect of various depositional parameters including paleoclimate,paleosalinity and provenance,on the depositional mechanism of lacustrine shale is very important in reconstructing the depositional environment.The classification of shale lithofacies and the interpretation of shale depositional environment are key features used in shale oil and gas exploration and development activity.The lower 3rd member of the Eocene Shahejie Formation(Es_(3)^(x)shale)was selected for this study,as one of the main prospective intervals for shale oil exploration and development in the intracratonic Bohai Bay Basin.Mineralogically,it is composed of quartz(avg.9.6%),calcite(avg.58.5%),dolomite(avg.7%),pyrite(avg.3.3%)and clay minerals(avg.20%).An advanced methodology(thin-section petrography,total organic carbon and total organic sulfur contents analysis,X-ray diffraction(XRD),X-ray fluorescence(XRF),field-emission scanning electron microscopy(FE-SEM))was adopted to establish shale lithofacies and to interpret the depositional environment in the lacustrine basin.Six different types of lithofacies were recognized,based on mineral composition,total organic carbon(TOC)content and sedimentary structures.Various inorganic geochemical proxies(Rb/Sr,Ca/(Ca+Fe),Ti/Al,Al/Ca,Al/Ti,Zr/Rb)have been used to interpret and screen variations in depositional environmental parameters during the deposition of the Es_(3)^(x)shale.The experimental results indicate that the environment during the deposition of the Es_(3)^(x)shale was warm and humid with heightened salinities,moderate to limited detrital input,higher paleohydrodynamic settings and strong oxygen deficient(reducing)conditions.A comprehensive depositional model of the lacustrine shale was developed.The interpretations deduced from this research work are expected to not only expand the knowledge of shale lithofacies classification for lacustrine fine-grained rocks,but can also offer a theoretical foundation for lacustrine shale oil exploration and development.展开更多
Nigeria has an abundance of valuable solid minerals and rocks which can generate revenue for the government if they are fully exploited. Carbonate rock is one of such rocks that occur prominently in Igwe Igarra area o...Nigeria has an abundance of valuable solid minerals and rocks which can generate revenue for the government if they are fully exploited. Carbonate rock is one of such rocks that occur prominently in Igwe Igarra area of Edo State. Five (5) carbonate rock samples (Four marble and One Calcsilicate) were subjected to geochemical analyses. A petrographic study reveals that marble and calcsilicate contain calcite, quartz, microcline, plagioclase, biotite and opaque minerals. Geochemical data shows that carbonate rocks have variable geochemical characteristics: Igwe marble is highly Calcitic (96% - 98%) and very low in dolomite Mg(CO<sub>3</sub>). Calcsilicate rock is low in CaO (27.5%) and higher in marble. The Igwe marble is pure and contains fewer impurities compared to calcsilicate rock which makes it unideal for usage. Based on these characteristics the marble from Igwe is suitable as raw materials for the productions of glass, papers, beet sugar, aggregates, lubricants and fillers.展开更多
The Late Paleozoic and Mesozoic tectonic framework of the Nanpanjiang Basin has much been disputed.Herein,the middle-acid volcanic rock,dacite,exposed to the Zhesang gold district,southeast Yunnan Province,has been an...The Late Paleozoic and Mesozoic tectonic framework of the Nanpanjiang Basin has much been disputed.Herein,the middle-acid volcanic rock,dacite,exposed to the Zhesang gold district,southeast Yunnan Province,has been analyzed.The results show that the dacite belongs to a calc-alkaline series,SiO_(2)contents range from 62.79 to 76.66 wt%.Zircon SHRIMP U–Pb dating of dacite demonstrates that they were formed in the Early Triassic(247.8±1.7 Ma,MSWD=1.2).All samples exhibit enrichment in LILE(e.g.Rb,K,Th,and U),and depletion in HFSE(e.g.Nb,Ta,and Ti),which has the geochemical affinity of I-type granite.La–La/Sm and La–La/Yb discrimination diagrams show that the partial melting,mainly of the mafic lower crust,of rocks,plays a major role in the formation process.The dacite has low initial ^(87)Sr/^(86)Sr ratios(0.706954 to 0.708589)and negative ε_(Nd)(t)values(-11.77 to-10.88).Zircons in dacite have ε_(Hf)(t)values of-16.2 to-8.3,and the two-stage Hf model ages are 1799–2301 Ma,mostly concentrated between 1800 and 1900 Ma,indicating that the magma source area is the reconstructed ancient lower crust mixed with some mantle materials,and crystal fractionation process underwent in the late stage of magma migration.This study reveals that the arc-volcanic rocks of the Early Triassic in the southern margin of the Nanpanjiang Basin were formed by the subduction of the Late Paleozoic ocean basin within the border region between China and Vietnam.展开更多
The Merguechoum fluorite-barite mineralization,located in the Eastern Meseta of Morocco,is hosted in the Late Hercynian granite.The ore consists of fine crystals of fluorite 1,massive barite 1,euhedral crystals of flu...The Merguechoum fluorite-barite mineralization,located in the Eastern Meseta of Morocco,is hosted in the Late Hercynian granite.The ore consists of fine crystals of fluorite 1,massive barite 1,euhedral crystals of fluorite 2,and barite 2 with calcite and minor quartz and sulfides.The Merguechoum ore deposits have never been investigated.This study was the first contribution that studied the genesis of fluorite and barite.The ore occurs as dissemination within granite intrusion and also fills the NE-SWtrending meter-sized fractures and faults.The values of the total Rare Earth Elements and Yttrium(REY)and the ratios of LREY/HREY,Y/Ho,Tb/Ca,and Tb/La indicate that the Merguechoum fluorite precipitated from hydrothermal fluids,likely basinal brines,which interacted with the Hercynian granite.The REY data indicate that the ore-forming fluids of the early stage have intensely interacted with the Hercynian granite compared to those of the late ore stage.The gradual decrease in the europium(Eu/Eu^(*)),yttrium(Y/Y^(*)),and cerium(Ce/Ce^(*))anomalies and a low concentration ofΣREY observed in the second ore stage compared to the first ore stage suggest an increase in p H and fO_(2)and by inference a decrease in temperature during the evolution of the hydrothermal system.This evolution could be explained by fluid mixing between the ascending basinal hydrothermal fluids and the diluted sulfate-rich meteoric water barite separates from selected samples reveal that the dissolved sulfates(SO_(4)^(2-))were derived from Permian–Triassic sulfates and/or coeval poreseawater sulfates.The proposed fluid mixing triggered the precipitation of an early-stage F-Ba assemblage followed by the second-stage F-Ba mineralization.Geologic fieldwork,REY inventories,and isotope data point to the ore genesis during the Permian–Triassic extensional tectonic activity concerning the Pangea rifting.This extensional tectonic environment is likely the driving force that mobilized a large amount of the ore-forming basinal brines along the available faults and fractures to the loci of ore deposition.展开更多
Six outcrop sections in Fenghe River,Northwestern China,were sampled and analyzed.This study aims to determine provenance,tectonic setting,and source-area paleoweathering of the sediments of Fenghe River in combinatio...Six outcrop sections in Fenghe River,Northwestern China,were sampled and analyzed.This study aims to determine provenance,tectonic setting,and source-area paleoweathering of the sediments of Fenghe River in combination of lithofacies analysis and bulk-rock geochemical data.The lithofacies in the studied area were classified as gravel,sand,and fine-grained clastic lithofacies,reflecting generally channel fill deposits,channel bar deposits,and over-bank deposits,respectively.The Chemical Index of Alteration(CIA),Plagioclase Index of Alteration(PIA),and Chemical Index of Weathering(CIW)values ranged 50.10–62.29,50.13–66.35,56.52–71.12,respectively,together with element ratios such as Rb/Sr,K/Na,Rb/K,Th/K,Rb/Ti,and Cs/Ti indicate that the source area was under a low to moderate chemical weathering condition probably in cold and semi-arid climates.Moreover,plot of SiO_(2)vs.(Al_(2)O_(3)+K_(2)O+Na_(2)O)suggests that the sediments were deposited in a semi-arid climate.Plots of Cr/Th vs.Th/Sc,TiO_(2)vs.Zr,La/Yb vs.rare earth element(REE),and La-Th-Sc ternary diagrams,along with the lithology,indicate that the sediments in Fenghe River were mainly originated from felsic igneous rocks.Major elements-based discrimination diagrams and Th-Sc-Zr/10 and La-Th-Sc ternary diagram of the samples indicates that the source rocks of Fenghe River developed in a composite active continental margin and continental island arc field.展开更多
Nyiragongo volcanic eruptions of 1977 and 2002 emitted silica-undersaturated lavas named melilite-nephelinites with microlithic to sub-porphyritic textures, and consisted of olivine, clinopyroxene (augite), phlogopite...Nyiragongo volcanic eruptions of 1977 and 2002 emitted silica-undersaturated lavas named melilite-nephelinites with microlithic to sub-porphyritic textures, and consisted of olivine, clinopyroxene (augite), phlogopite, melilite, magnetite, and rare plagioclases. This melilite-nephelinite as an evolved rock, shows low SiO<sub>2</sub> (38.40 - 39.52 wt%) and MgO (3.10 - 4.01 wt%), and relatively high FeOt (13.76 - 14.10 wt%), Al<sub>2</sub>O<sub>3</sub> (15.01 - 16.48 wt%), CaO (11.00 - 12.29 wt%) and Na<sub>2</sub>O + K<sub>2</sub>O (10.34 - 11.85 wt%). Unlike LA-ICP-MS on silicate melt inclusions (SMIs) hosted in augite show a pristine melt of picrobasaltic (low Ti-picrite) rock poor in SiO<sub>2</sub> (31.14 - 32.26 wt%), FeOt (2.19 - 2.79 wt%), Al<sub>2</sub>O<sub>3</sub> (8.01 - 9.57 wt%), and Na<sub>2</sub>O + K<sub>2</sub>O (2.34 - 3.05 wt%), while enriched in MgO (20.27 - 28.63 wt%), and CaO (24.95 - 33.17 wt%). The sums (∑REEs) for lavas and SMIs are ranging 712 - 799 and 43 - 119 ppm respectively. REE contracted multi-element patterns showed a W-feature for most lavas except for SMIs. High Rb/Sr, and low Ba/Rb, Zr/Nb, and Sm/Hf ratios of lavas suggest a phlogopite-rich source of materials. .展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)+1 种基金the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant Nos.JKYZD202316,KK2116)the China Scholarship Council project and the Geological Survey project(Grant No.DD20230054).
文摘Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)a geological survey project(Grant No.DD20230054).
文摘The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFD1500801)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020302)+1 种基金the Basic Geological Survey Project of China Geological Survey(Grant No.DD20230089)the project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant Nos.QCJJ2023-53,QCJJ2023-54,QCJJ2022-41)。
文摘The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.
基金funded by the Faculty of Geography under the scheme of“Dana Hibah Penelitian Mandiri Dosen Tahun 2023 Tahap 1”。
文摘Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.JKYZD202316)+2 种基金the National Natural Science Foundation of China(Grant Nos.42272093,42230813,42002097)the Research Project of the Shengyuan Mining Co.,Ltd.,Tibet(Grant No.XZSYKYJT-JSFW2019-001)the China Scholarship Council project and the Geological Survey project(Grant Nos.DD20230054,DD20221684,DD20221690,DD20230031,DD20230049,DD20230338)。
文摘Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.
基金Financial Support to conduct the Geochemical Analysis in NGRIHyderabad under the Project Contract No.6111264。
文摘The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97).
基金funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia
文摘The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.
基金financially supported by the National Natural Science Foundation of China(92062215,41720104009,42172069)the China Geological Survey(DD20221886,DD20221817,DD20221657,DD20230340,DD20221630)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0801)。
文摘The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.
基金This article is the research result of the Education and Teaching Reform Research Project(No.2022JGB038)of Central South University and supported by the Scientific Research Fund of Hunan Provincial Education Department(No.23B0953).
文摘The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)National Natural Science Foundation of China(Grant Nos.42272093 and 42230813)+2 种基金Basic Research Fund of Chinese Academy of Geological Sciences(Grant Nos.JKYZD202316,KJ2102,KK2116,and JKY202208)Geological Survey Project(Grant No.DD20221684)China Scholarship Council(Grant No.CSC202206400059)。
文摘Jiama is a giant,high-grade porphyry copper system in the Gangdese metallogenic belt,Tibet.Multistage intermediate-felsic porphyries intruded in this deposit,some of which are strongly associated with copper-polymetallic mineralization.These ore-bearing porphyries include monzogranite,granodiorite,and quartz diorite porphyries.A new granite aplite dyke was found in the south of Jiama.Its age,genesis,and relationship with ore-related magmatism are obscure.Here,its emplacement age and petrogenesis were determined using mineralogy,zircon U-Pb dating,geochemistry,and Sr-Nd-Pb isotope studies.The zircon LA-ICP-MS U-Pb age of the aplite dyke is 16.66±0.21 Ma(n=14,MSWD=0.66),earlier than that of the ore-bearing porphyries(~15 Ma)in Jiama.Furthermore,the aplite exhibits high amounts of silicon(SiO_(2)=73.39%-74.74%),potassium(K_(2)O=5.12%-6.61%),aluminum(Al_(2)O_(3)=14.25%-14.69%),and light/heavy rare earth elements(LREE/HREE=12.12-16.19)as well as negative europium(δEu=0.47-0.72)and weak negative cerium anomalies(δCe=0.84-0.93).The aplite dyke is characteristic of metaluminous-peraluminous I-type granite,which is rich in large-ion lithophile elements(Rb,Ba,Th and U)and depleted in high-field-strength elements(Nb,P and Ti).The aplite dyke and ore-bearing porphyries in the Jiama deposit are the results of a partial melting of the juvenile lower crust,according to whole-rock geochemistry and Sr-Nd-Pb isotope data,but the dyke and ore-bearing porphyries were emplaced from the same magma chamber at different times.Thus,the aplite dyke shows the composition of the early evolution stage of shallow magma in the Jiama deposit and is the product of rapid condensation and crystallization.
基金The National Natural Science Foundation of China under contract No.42072181。
文摘Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972170,42102127)Shandong Provincial Natural Science Foundation(Grant No.ZR2021QD087)+1 种基金Chinese Postdoctoral Science Foundation(Grant No.2021M702019)SDUST Research Fund(Grant No.2018TDJH101)。
文摘Tonstein layers are found worldwide in the Permo-Carboniferous coal-bearing strata.This study investigates the geochronology,mineralogy,and geochemistry of four tonstein samples from the Permo-Carboniferous Benxi Formation,Ordos Basin,North China Craton(NCC).The typical features of the studied tonsteins include thin beds,lateral continuity,angular quartz grains,and euhedral zircons with similar U-Pb ages,indicating a significant pyroclastic origin.In addition,the tonstein samples have low TiO_(2)/Al_(2)O_(3)ratios(<0.02)and rare earth elements and yttrium(REY)concentrations with obvious negative Eu anomalies,indicating that the tonsteins have a felsic magma origin.Moreover,compared with the mean composition of clay shale,the studied tonsteins are characterized by high concentrations of the elements Nb and Ta,which may affect the concentration of the corresponding elements in surrounding coal seams.The zircon U-Pb ages of the tonsteins(293.9-298.8 Ma)provide a precise chronological framework on the Benxi Formation in the Ordos Basin,constraining the Gzhelian-Aselian stages.The tonsteins were probably sourced from arc volcanism along the western margin of the NCC during the early Permian,implying that the Alxa Terrane had not amalgamated with the NCC at that time.
基金supported by the National Science and Technology Major Project of China(Grant No.2017ZX05009-002)the National Natural Science Foundation of China(Nos.U1762217,41702139,42072164 and 41821002)+2 种基金Taishan Scholars Program(No.TSQN201812030)the Fundamental Research Funds for the Central Universities(19CX07003A)the School of Geosciences,China University of Petroleum,East China,for analytical support and financial support。
文摘The effect of various depositional parameters including paleoclimate,paleosalinity and provenance,on the depositional mechanism of lacustrine shale is very important in reconstructing the depositional environment.The classification of shale lithofacies and the interpretation of shale depositional environment are key features used in shale oil and gas exploration and development activity.The lower 3rd member of the Eocene Shahejie Formation(Es_(3)^(x)shale)was selected for this study,as one of the main prospective intervals for shale oil exploration and development in the intracratonic Bohai Bay Basin.Mineralogically,it is composed of quartz(avg.9.6%),calcite(avg.58.5%),dolomite(avg.7%),pyrite(avg.3.3%)and clay minerals(avg.20%).An advanced methodology(thin-section petrography,total organic carbon and total organic sulfur contents analysis,X-ray diffraction(XRD),X-ray fluorescence(XRF),field-emission scanning electron microscopy(FE-SEM))was adopted to establish shale lithofacies and to interpret the depositional environment in the lacustrine basin.Six different types of lithofacies were recognized,based on mineral composition,total organic carbon(TOC)content and sedimentary structures.Various inorganic geochemical proxies(Rb/Sr,Ca/(Ca+Fe),Ti/Al,Al/Ca,Al/Ti,Zr/Rb)have been used to interpret and screen variations in depositional environmental parameters during the deposition of the Es_(3)^(x)shale.The experimental results indicate that the environment during the deposition of the Es_(3)^(x)shale was warm and humid with heightened salinities,moderate to limited detrital input,higher paleohydrodynamic settings and strong oxygen deficient(reducing)conditions.A comprehensive depositional model of the lacustrine shale was developed.The interpretations deduced from this research work are expected to not only expand the knowledge of shale lithofacies classification for lacustrine fine-grained rocks,but can also offer a theoretical foundation for lacustrine shale oil exploration and development.
文摘Nigeria has an abundance of valuable solid minerals and rocks which can generate revenue for the government if they are fully exploited. Carbonate rock is one of such rocks that occur prominently in Igwe Igarra area of Edo State. Five (5) carbonate rock samples (Four marble and One Calcsilicate) were subjected to geochemical analyses. A petrographic study reveals that marble and calcsilicate contain calcite, quartz, microcline, plagioclase, biotite and opaque minerals. Geochemical data shows that carbonate rocks have variable geochemical characteristics: Igwe marble is highly Calcitic (96% - 98%) and very low in dolomite Mg(CO<sub>3</sub>). Calcsilicate rock is low in CaO (27.5%) and higher in marble. The Igwe marble is pure and contains fewer impurities compared to calcsilicate rock which makes it unideal for usage. Based on these characteristics the marble from Igwe is suitable as raw materials for the productions of glass, papers, beet sugar, aggregates, lubricants and fillers.
基金supported by the Open Fund for Sanjiang Key Laboratory of Mineralization and Resource Exploration and Utilization,Ministry of Natural Resources(ZRZYBSJSYS2021002)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050006)+2 种基金the National Natural Science Foundation of China(No.41772070)supported by the National Research Center of Geoanalysis(NRCG)Chinese Academy of Geological Sciences(CAGS)。
文摘The Late Paleozoic and Mesozoic tectonic framework of the Nanpanjiang Basin has much been disputed.Herein,the middle-acid volcanic rock,dacite,exposed to the Zhesang gold district,southeast Yunnan Province,has been analyzed.The results show that the dacite belongs to a calc-alkaline series,SiO_(2)contents range from 62.79 to 76.66 wt%.Zircon SHRIMP U–Pb dating of dacite demonstrates that they were formed in the Early Triassic(247.8±1.7 Ma,MSWD=1.2).All samples exhibit enrichment in LILE(e.g.Rb,K,Th,and U),and depletion in HFSE(e.g.Nb,Ta,and Ti),which has the geochemical affinity of I-type granite.La–La/Sm and La–La/Yb discrimination diagrams show that the partial melting,mainly of the mafic lower crust,of rocks,plays a major role in the formation process.The dacite has low initial ^(87)Sr/^(86)Sr ratios(0.706954 to 0.708589)and negative ε_(Nd)(t)values(-11.77 to-10.88).Zircons in dacite have ε_(Hf)(t)values of-16.2 to-8.3,and the two-stage Hf model ages are 1799–2301 Ma,mostly concentrated between 1800 and 1900 Ma,indicating that the magma source area is the reconstructed ancient lower crust mixed with some mantle materials,and crystal fractionation process underwent in the late stage of magma migration.This study reveals that the arc-volcanic rocks of the Early Triassic in the southern margin of the Nanpanjiang Basin were formed by the subduction of the Late Paleozoic ocean basin within the border region between China and Vietnam.
文摘The Merguechoum fluorite-barite mineralization,located in the Eastern Meseta of Morocco,is hosted in the Late Hercynian granite.The ore consists of fine crystals of fluorite 1,massive barite 1,euhedral crystals of fluorite 2,and barite 2 with calcite and minor quartz and sulfides.The Merguechoum ore deposits have never been investigated.This study was the first contribution that studied the genesis of fluorite and barite.The ore occurs as dissemination within granite intrusion and also fills the NE-SWtrending meter-sized fractures and faults.The values of the total Rare Earth Elements and Yttrium(REY)and the ratios of LREY/HREY,Y/Ho,Tb/Ca,and Tb/La indicate that the Merguechoum fluorite precipitated from hydrothermal fluids,likely basinal brines,which interacted with the Hercynian granite.The REY data indicate that the ore-forming fluids of the early stage have intensely interacted with the Hercynian granite compared to those of the late ore stage.The gradual decrease in the europium(Eu/Eu^(*)),yttrium(Y/Y^(*)),and cerium(Ce/Ce^(*))anomalies and a low concentration ofΣREY observed in the second ore stage compared to the first ore stage suggest an increase in p H and fO_(2)and by inference a decrease in temperature during the evolution of the hydrothermal system.This evolution could be explained by fluid mixing between the ascending basinal hydrothermal fluids and the diluted sulfate-rich meteoric water barite separates from selected samples reveal that the dissolved sulfates(SO_(4)^(2-))were derived from Permian–Triassic sulfates and/or coeval poreseawater sulfates.The proposed fluid mixing triggered the precipitation of an early-stage F-Ba assemblage followed by the second-stage F-Ba mineralization.Geologic fieldwork,REY inventories,and isotope data point to the ore genesis during the Permian–Triassic extensional tectonic activity concerning the Pangea rifting.This extensional tectonic environment is likely the driving force that mobilized a large amount of the ore-forming basinal brines along the available faults and fractures to the loci of ore deposition.
基金Supported by the National Natural Science Foundation of China (Nos.42130206,41302076)the MOST Special Fund awarded by the State Key Laboratory of Continental Dynamics,Northwest University (No.201210128)the Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Mineral,Shandong University of Science and Technology (No.DMSM2017033)。
文摘Six outcrop sections in Fenghe River,Northwestern China,were sampled and analyzed.This study aims to determine provenance,tectonic setting,and source-area paleoweathering of the sediments of Fenghe River in combination of lithofacies analysis and bulk-rock geochemical data.The lithofacies in the studied area were classified as gravel,sand,and fine-grained clastic lithofacies,reflecting generally channel fill deposits,channel bar deposits,and over-bank deposits,respectively.The Chemical Index of Alteration(CIA),Plagioclase Index of Alteration(PIA),and Chemical Index of Weathering(CIW)values ranged 50.10–62.29,50.13–66.35,56.52–71.12,respectively,together with element ratios such as Rb/Sr,K/Na,Rb/K,Th/K,Rb/Ti,and Cs/Ti indicate that the source area was under a low to moderate chemical weathering condition probably in cold and semi-arid climates.Moreover,plot of SiO_(2)vs.(Al_(2)O_(3)+K_(2)O+Na_(2)O)suggests that the sediments were deposited in a semi-arid climate.Plots of Cr/Th vs.Th/Sc,TiO_(2)vs.Zr,La/Yb vs.rare earth element(REE),and La-Th-Sc ternary diagrams,along with the lithology,indicate that the sediments in Fenghe River were mainly originated from felsic igneous rocks.Major elements-based discrimination diagrams and Th-Sc-Zr/10 and La-Th-Sc ternary diagram of the samples indicates that the source rocks of Fenghe River developed in a composite active continental margin and continental island arc field.
文摘Nyiragongo volcanic eruptions of 1977 and 2002 emitted silica-undersaturated lavas named melilite-nephelinites with microlithic to sub-porphyritic textures, and consisted of olivine, clinopyroxene (augite), phlogopite, melilite, magnetite, and rare plagioclases. This melilite-nephelinite as an evolved rock, shows low SiO<sub>2</sub> (38.40 - 39.52 wt%) and MgO (3.10 - 4.01 wt%), and relatively high FeOt (13.76 - 14.10 wt%), Al<sub>2</sub>O<sub>3</sub> (15.01 - 16.48 wt%), CaO (11.00 - 12.29 wt%) and Na<sub>2</sub>O + K<sub>2</sub>O (10.34 - 11.85 wt%). Unlike LA-ICP-MS on silicate melt inclusions (SMIs) hosted in augite show a pristine melt of picrobasaltic (low Ti-picrite) rock poor in SiO<sub>2</sub> (31.14 - 32.26 wt%), FeOt (2.19 - 2.79 wt%), Al<sub>2</sub>O<sub>3</sub> (8.01 - 9.57 wt%), and Na<sub>2</sub>O + K<sub>2</sub>O (2.34 - 3.05 wt%), while enriched in MgO (20.27 - 28.63 wt%), and CaO (24.95 - 33.17 wt%). The sums (∑REEs) for lavas and SMIs are ranging 712 - 799 and 43 - 119 ppm respectively. REE contracted multi-element patterns showed a W-feature for most lavas except for SMIs. High Rb/Sr, and low Ba/Rb, Zr/Nb, and Sm/Hf ratios of lavas suggest a phlogopite-rich source of materials. .