Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Acute variceal bleeding in patients with liver cirrhosis and portal hypertension(PHT) is the most serious emergency complication among those patients and could have catastrophic outcomes if not timely managed. Early s...Acute variceal bleeding in patients with liver cirrhosis and portal hypertension(PHT) is the most serious emergency complication among those patients and could have catastrophic outcomes if not timely managed. Early screening by esophago-gastro-duodenoscopy(EGD) for the presence of esophageal varices(EVs) is currently recommended by the practice guidelines for all cirrhotic patients. Meanwhile, EGD is not readily accepted or preferred by many patients. The literature is rich in studies to investigate and validate non-invasive markers of EVs prediction aiming at reducing the unneeded endoscopic procedures. Gallbladder(GB) wall thickness(GBWT) measurement has been found promising in many published research articles. We aim to highlight the validity of sonographic GBWT measurement in the prediction of EVs based on the available evidence. We searched databases including Cochrane library, Pub Med, Web of Science and many others for relevant articles. GBWT is associated with the presence of EVs in cirrhotic patients with PHT of different etiologies. The cut-off of GBWT that can predict the presence of EVs varied in the literature and ranges from 3.1 mm to 4.35 mm with variable sensitivities of 46%-90.9% and lower cutoffs in viral cirrhosis compared to non-viral, however GBWT > 4 mm in many studies is associated with acceptable sensitivity up to 90%. Furthermore, a relation was also noticed with the degree of varices and portal hypertensive gastropathy.Among cirrhotics, GBWT > 3.5 mm predicts the presence of advanced(grade Ⅲ-Ⅳ) EVs with a sensitivity of 45%, the sensitivity increased to 92% when a cut-off ≥ 3.95 mm was used in another cohort. Analysis of these results should carefully be revised in the context of ascites, hypoalbuminemia and other intrinsic GB diseases among cirrhotic patients. The sensitivity for prediction of EVs improved upon combining GBWT measurement with other non-invasive predictors, e.g., platelets/GBWT.展开更多
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronol...Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months.展开更多
This article extends on the use of transabdominal intestinal ultrasound in diagnosing pediatric inflammatory bowel disease.Some of the more essential features used in assessing bowel inflammation,such as hyperemia and...This article extends on the use of transabdominal intestinal ultrasound in diagnosing pediatric inflammatory bowel disease.Some of the more essential features used in assessing bowel inflammation,such as hyperemia and wall thickness on ultrasound,are expanded upon from the publication on imaging and endoscopic tools in pediatric inflammatory bowel disease.展开更多
The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform'...Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform's thickness, percentage of thickness reduction, mandrel rotational speed, feed rate, solution treatment time and aging treatment time on the wall thickness changes and process time in thermo-mechanical tube spinning process for fabrication of 2024 aluminum spun tubes using design of experiments (DOE), are studied. The statistical results are verified through some experiments. Results of experimental evaluation are analyzed by variance analysis and mathematic models are obtained. Finally using these models, input parameters for optimum production are achieved.展开更多
Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous st...Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.展开更多
Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner r...Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.展开更多
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv...The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.展开更多
An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the in...An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.展开更多
This study proposed a prediction formula for the torsional strength enabling to reflect the tensile strength of ultra high performance concrete (UHPC) beams based upon the thin-walled tube theory. The remarkable ducti...This study proposed a prediction formula for the torsional strength enabling to reflect the tensile strength of ultra high performance concrete (UHPC) beams based upon the thin-walled tube theory. The remarkable ductile behavior of UHPC can also be attributed to the steel fiber reinforcement. This feature must be considered to provide rational explanation of the torsional behavior of UHPC structures. In this study, the proposed torsional design adopts a modified thin-walled tube theory so as to consider the tensile behavior of UHPC. And torsion test was conducted on thin-walled UHPC box beams to validate the proposed formula through comparison of the predicted torsional strength with the experimental results. The comparison of the predicted values of the cracking torque and torsional moment resistance with those observed in the torsional test of UHPC verified the validity of the design method. The contribution of the steel fibers to the torsional strength and cracking load was larger than that of the stirrups, but the stirrups appeared to contribute additionally to the torsional ductility. Accordingly, it is recommended that design should exploit effectively the contribution of the steel fiber rather than arrange a larger number of stirrups in UHPC structures subjected to torsion.展开更多
The principle and method for measuring the wall thickness of transparent tube are presented.The measurement is based on total-refection vanishing light. The transmittance of transparent tube in the parallel light is s...The principle and method for measuring the wall thickness of transparent tube are presented.The measurement is based on total-refection vanishing light. The transmittance of transparent tube in the parallel light is studied. The critical conditions of total--reflection are discussed.展开更多
During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing...During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.展开更多
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd...Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.展开更多
By elastic mechanics, the deformation of single throttle-slice for shock absorber was analyzed, the formula of its deformation was established. According to the relation of the deformation of multi-throttle-slices wit...By elastic mechanics, the deformation of single throttle-slice for shock absorber was analyzed, the formula of its deformation was established. According to the relation of the deformation of multi-throttle-slices with the pressure on each slice, the analytic formula of equivalent thickness of multi-throttle-slices was established. Followed is a practical example for the computation of the equivalent thickness of multi-throttle-slices, compared the computed results with that simulated by ANSYS. The results show that the computation method of equivalent thickness of multi-throttle-slices is accurate enough.展开更多
Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="&...Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="">COVID-19 pandemic, environmental problems such as ener<span>gy crisis, global warming, and contamination from pathogenic mi</span>cro-organisms <span>are still prevailed and strongly demanded progress in high</span></span></span></span><span><span><span style="font-family:;" "="">-</span></span></span><span><span><span style="font-family:;" "="">performance</span></span></span><span><span><span style="font-family:;" "=""> energy storing and anti-microbial materials. The nanocomposites are materials <span>that have earned large interest owing to their promising applications for</span> countering global issues related to sustainable energy and</span></span></span><span><span><span style="font-family:;" "=""> a</span></span></span><span><span><span style="font-family:;" "=""> flourishing environ<span>ment. Here, polypyrrole </span></span></span></span><span><span><span style="font-family:;" "="">coated</span></span></span><span><span><span style="font-family:;" "=""> hybrid nanocomposites of multi-walled</span></span></span><span><span><span style="font-family:;" "=""> carbon nanotube and cadmium sulfide quantum dots named MCP were synthe<span>sized using facile and low-cost <i>in-situ</i> oxidative polymerization method.</span> Cha<span>racterization techniques confirmed the synthesis. Electrochemical studies</span> showed that the nanocomposite <span>1-MCP<i> </i></span>showed an impressively higher super capacitance behavior in comparison to f-MWCNT, 7-MCP and 5-MCP. The improved performance of the nanocomposites was attributed mainly to the good conductivity of carbon nanotubes and polypyrrole, high surface area, and stability of the carbon nanotubes and the high electrocatalytic activity of the cadmium sulfide quantum dots. Owing to the synergistic effect of MWCNT, <span>CdS, and PPy the synthesized ternary nanocomposite also inhibited the</span> growth and multiplication of tested bacteria such as <i>S. aureus</i>, and <i>E. coli</i> completely within 24 h. On the whole, the assimilated nanocomposite MCP opens promising aspects for the development of upcoming energy storage devices and as<span style="color:red;"> </span></span></span></span><span><span><span style="font-family:;" "="">an </span></span></span><span><span><span style="font-family:;" "="">antibacterial agent.</span></span></span>展开更多
A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids....A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids. A great number of materials have potential to be used in nanoparticles production and then in nanofluids;one of them is Multi-Walled Carbon Nano Tubes (MWCNT). They have thermal conductivity around 3000 W/mK while other materials used as nanoparticles like CuO have thermal conductivity of 76.5 W/mK. Due to this fact, MWCNT nanoparticles have potential to be used in nanofluids production, aiming to increase heat transfer rate in energy systems. In this context, the main goal of this paper is to evaluate from the synthesis to the experimental measurement of thermal conductivity of nanofluid samples based on functionalized (-OH) MWCNT nanoparticles. They will be analyzed nanoparticles with different functionalization degrees (4% wt, 6% wt, and 9% wt). In addition, it will be quantified other thermophysical properties (dynamic viscosity, specific heat and specific mass) of the synthetized nanofluids. So, the present work can contribute with experimental data that will help researches in the study and development of MWCNT nanofluids. According to the results, the maximum increment obtained in thermal conductivity was 10.65% in relation to the base fluid (water).展开更多
Theoretical analyses show that the variation of wall thickness is in direct proportion to outer-diameter, inter-diameter, and (1+R_s)^(1/2) (Rs is sectional increase ratio of tube), the theoretical calculated results ...Theoretical analyses show that the variation of wall thickness is in direct proportion to outer-diameter, inter-diameter, and (1+R_s)^(1/2) (Rs is sectional increase ratio of tube), the theoretical calculated results of wall thickness during tube dieless upsetting are very approximate to the experimental one. As the width of deformation field increases, both the variation of wall thickness and the derivative of wall thickness variation to width of deformation field (to/tf) reduce.展开更多
Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of str...Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of strips have been characterised.Also the welding conditions have been simulated.The favourable microstructure is achieved by the proper selection of an appropriate chemical composition of low carbon content and increased niobium micro alloying in combination with suitable strictly controlled hot-rolling parameters.The addition of niobium in combination with the adjustment of other alloying elements increases the recrystallisation stop temperature and thus makes it possible to apply a high temperature processing(HTP) concept.The homogeneous bainitic microstructure across the strip gauge is then formed during accelerated cooling on the run-out table of the hot-rolling mill.All results indicated excellent properties of these hot strips which make it suitable for spiral pipes of grade X80 for example 18.9mm×Φ1 220 mm at dimension.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘Acute variceal bleeding in patients with liver cirrhosis and portal hypertension(PHT) is the most serious emergency complication among those patients and could have catastrophic outcomes if not timely managed. Early screening by esophago-gastro-duodenoscopy(EGD) for the presence of esophageal varices(EVs) is currently recommended by the practice guidelines for all cirrhotic patients. Meanwhile, EGD is not readily accepted or preferred by many patients. The literature is rich in studies to investigate and validate non-invasive markers of EVs prediction aiming at reducing the unneeded endoscopic procedures. Gallbladder(GB) wall thickness(GBWT) measurement has been found promising in many published research articles. We aim to highlight the validity of sonographic GBWT measurement in the prediction of EVs based on the available evidence. We searched databases including Cochrane library, Pub Med, Web of Science and many others for relevant articles. GBWT is associated with the presence of EVs in cirrhotic patients with PHT of different etiologies. The cut-off of GBWT that can predict the presence of EVs varied in the literature and ranges from 3.1 mm to 4.35 mm with variable sensitivities of 46%-90.9% and lower cutoffs in viral cirrhosis compared to non-viral, however GBWT > 4 mm in many studies is associated with acceptable sensitivity up to 90%. Furthermore, a relation was also noticed with the degree of varices and portal hypertensive gastropathy.Among cirrhotics, GBWT > 3.5 mm predicts the presence of advanced(grade Ⅲ-Ⅳ) EVs with a sensitivity of 45%, the sensitivity increased to 92% when a cut-off ≥ 3.95 mm was used in another cohort. Analysis of these results should carefully be revised in the context of ascites, hypoalbuminemia and other intrinsic GB diseases among cirrhotic patients. The sensitivity for prediction of EVs improved upon combining GBWT measurement with other non-invasive predictors, e.g., platelets/GBWT.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金supported by the Russian Science Foundation grant no. 23-44-00067the National Natural Science Foundation of China grant no.42261134537 in the framework of a joint Russian-Chinese project (fieldwork)by the Russian Ministry of Science and Higher Education,grant number FSRZ-2023-0007 (for data analysis)
文摘Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months.
文摘This article extends on the use of transabdominal intestinal ultrasound in diagnosing pediatric inflammatory bowel disease.Some of the more essential features used in assessing bowel inflammation,such as hyperemia and wall thickness on ultrasound,are expanded upon from the publication on imaging and endoscopic tools in pediatric inflammatory bowel disease.
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
文摘Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform's thickness, percentage of thickness reduction, mandrel rotational speed, feed rate, solution treatment time and aging treatment time on the wall thickness changes and process time in thermo-mechanical tube spinning process for fabrication of 2024 aluminum spun tubes using design of experiments (DOE), are studied. The statistical results are verified through some experiments. Results of experimental evaluation are analyzed by variance analysis and mathematic models are obtained. Finally using these models, input parameters for optimum production are achieved.
基金The research described in this paper was supported in part by the National Natural Science Foundation of China(Grant No.31370948,11672065).
文摘Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.
基金Ministry of Science, Industry, and Technology which supported the project under the Industrial Thesis Support Program
文摘Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.
基金supported by National Natural Science Foundation ofChina(Grant No.50935002)
文摘The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.
文摘An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.
文摘This study proposed a prediction formula for the torsional strength enabling to reflect the tensile strength of ultra high performance concrete (UHPC) beams based upon the thin-walled tube theory. The remarkable ductile behavior of UHPC can also be attributed to the steel fiber reinforcement. This feature must be considered to provide rational explanation of the torsional behavior of UHPC structures. In this study, the proposed torsional design adopts a modified thin-walled tube theory so as to consider the tensile behavior of UHPC. And torsion test was conducted on thin-walled UHPC box beams to validate the proposed formula through comparison of the predicted torsional strength with the experimental results. The comparison of the predicted values of the cracking torque and torsional moment resistance with those observed in the torsional test of UHPC verified the validity of the design method. The contribution of the steel fibers to the torsional strength and cracking load was larger than that of the stirrups, but the stirrups appeared to contribute additionally to the torsional ductility. Accordingly, it is recommended that design should exploit effectively the contribution of the steel fiber rather than arrange a larger number of stirrups in UHPC structures subjected to torsion.
文摘The principle and method for measuring the wall thickness of transparent tube are presented.The measurement is based on total-refection vanishing light. The transmittance of transparent tube in the parallel light is studied. The critical conditions of total--reflection are discussed.
文摘During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.
基金Natural Science Foundation of China(Grant No.81960332)Guangxi Provincial Innovation driven Development Project(Grant No.GKAA17204062)+1 种基金Guangxi Provincial Natural Science Foundation(Grant No.2016GXNSFAA380211)Liuzhou Municipal Scientific Research and Technology Development Plan(Grant No.2016C050203)。
文摘Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.
文摘By elastic mechanics, the deformation of single throttle-slice for shock absorber was analyzed, the formula of its deformation was established. According to the relation of the deformation of multi-throttle-slices with the pressure on each slice, the analytic formula of equivalent thickness of multi-throttle-slices was established. Followed is a practical example for the computation of the equivalent thickness of multi-throttle-slices, compared the computed results with that simulated by ANSYS. The results show that the computation method of equivalent thickness of multi-throttle-slices is accurate enough.
文摘Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="">COVID-19 pandemic, environmental problems such as ener<span>gy crisis, global warming, and contamination from pathogenic mi</span>cro-organisms <span>are still prevailed and strongly demanded progress in high</span></span></span></span><span><span><span style="font-family:;" "="">-</span></span></span><span><span><span style="font-family:;" "="">performance</span></span></span><span><span><span style="font-family:;" "=""> energy storing and anti-microbial materials. The nanocomposites are materials <span>that have earned large interest owing to their promising applications for</span> countering global issues related to sustainable energy and</span></span></span><span><span><span style="font-family:;" "=""> a</span></span></span><span><span><span style="font-family:;" "=""> flourishing environ<span>ment. Here, polypyrrole </span></span></span></span><span><span><span style="font-family:;" "="">coated</span></span></span><span><span><span style="font-family:;" "=""> hybrid nanocomposites of multi-walled</span></span></span><span><span><span style="font-family:;" "=""> carbon nanotube and cadmium sulfide quantum dots named MCP were synthe<span>sized using facile and low-cost <i>in-situ</i> oxidative polymerization method.</span> Cha<span>racterization techniques confirmed the synthesis. Electrochemical studies</span> showed that the nanocomposite <span>1-MCP<i> </i></span>showed an impressively higher super capacitance behavior in comparison to f-MWCNT, 7-MCP and 5-MCP. The improved performance of the nanocomposites was attributed mainly to the good conductivity of carbon nanotubes and polypyrrole, high surface area, and stability of the carbon nanotubes and the high electrocatalytic activity of the cadmium sulfide quantum dots. Owing to the synergistic effect of MWCNT, <span>CdS, and PPy the synthesized ternary nanocomposite also inhibited the</span> growth and multiplication of tested bacteria such as <i>S. aureus</i>, and <i>E. coli</i> completely within 24 h. On the whole, the assimilated nanocomposite MCP opens promising aspects for the development of upcoming energy storage devices and as<span style="color:red;"> </span></span></span></span><span><span><span style="font-family:;" "="">an </span></span></span><span><span><span style="font-family:;" "="">antibacterial agent.</span></span></span>
文摘A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids. A great number of materials have potential to be used in nanoparticles production and then in nanofluids;one of them is Multi-Walled Carbon Nano Tubes (MWCNT). They have thermal conductivity around 3000 W/mK while other materials used as nanoparticles like CuO have thermal conductivity of 76.5 W/mK. Due to this fact, MWCNT nanoparticles have potential to be used in nanofluids production, aiming to increase heat transfer rate in energy systems. In this context, the main goal of this paper is to evaluate from the synthesis to the experimental measurement of thermal conductivity of nanofluid samples based on functionalized (-OH) MWCNT nanoparticles. They will be analyzed nanoparticles with different functionalization degrees (4% wt, 6% wt, and 9% wt). In addition, it will be quantified other thermophysical properties (dynamic viscosity, specific heat and specific mass) of the synthetized nanofluids. So, the present work can contribute with experimental data that will help researches in the study and development of MWCNT nanofluids. According to the results, the maximum increment obtained in thermal conductivity was 10.65% in relation to the base fluid (water).
基金Sponsored by Ministry of Education of China and Natural Science Foundation of Liaoning Province
文摘Theoretical analyses show that the variation of wall thickness is in direct proportion to outer-diameter, inter-diameter, and (1+R_s)^(1/2) (Rs is sectional increase ratio of tube), the theoretical calculated results of wall thickness during tube dieless upsetting are very approximate to the experimental one. As the width of deformation field increases, both the variation of wall thickness and the derivative of wall thickness variation to width of deformation field (to/tf) reduce.
文摘Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of strips have been characterised.Also the welding conditions have been simulated.The favourable microstructure is achieved by the proper selection of an appropriate chemical composition of low carbon content and increased niobium micro alloying in combination with suitable strictly controlled hot-rolling parameters.The addition of niobium in combination with the adjustment of other alloying elements increases the recrystallisation stop temperature and thus makes it possible to apply a high temperature processing(HTP) concept.The homogeneous bainitic microstructure across the strip gauge is then formed during accelerated cooling on the run-out table of the hot-rolling mill.All results indicated excellent properties of these hot strips which make it suitable for spiral pipes of grade X80 for example 18.9mm×Φ1 220 mm at dimension.