期刊文献+
共找到685篇文章
< 1 2 35 >
每页显示 20 50 100
Assessing the Efficacy of Wheat-Soybean Based Intercropping System at Different Plant Densities in Bambili, Cameroon
1
作者 Lendzemo E. Tatah Jeazet K. Teitiogo +3 位作者 Oben Tom Tabi Tange D. Achiri Njualem D. Khumbah Chi Christopher Tamu 《American Journal of Plant Sciences》 CAS 2024年第4期235-251,共17页
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve... Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended. 展开更多
关键词 Competitive Ration Land Equivalence Ration INTERCROP soybean WHEAT
下载PDF
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
2
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 Nitrogen Maize/soybean FERTILIZATION intercropping Soil FIXATION
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
3
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation soybean NODULE
下载PDF
Assessing the Influence of Phosphorus Fertilization on the Growth and Yield of Maize/Soybean Intercrop by Analyzing Nitrogen Uptake
4
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第8期189-210,共22页
Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitro... Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems. 展开更多
关键词 intercropping FERTILIZATION CHLOROPHYLL Maize/soybeans Nitrogen
下载PDF
Soybean maize strip intercropping:A solution for maintaining food security in China
5
作者 Jiang Liu Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2503-2506,共4页
The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,pr... The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development. 展开更多
关键词 strip intercropping food security soybean MAIZE spatial arrangement
下载PDF
Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems 被引量:5
6
作者 WU Yu-shan YANG Feng +9 位作者 GONG Wan-zhuo Shoaib Ahmed FAN Yuan-fang WU Xiao-ling YONG Tai-wen LIU Wei-guo SHU Kai LIU Jiang DU Jun-bo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1331-1340,共10页
Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morpholog... Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morphology responds to shading(i.e.,shade tolerance or avoidance)and which features may be suitable as screening materials in relay strip intercropping.Therefore,in this study,various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.The soybean materials used in this study exhibited genetic diversity,and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08%during the shade period and from 6.44 to 52.49%during the maturity period.The ratios of shading to full irradiance in stem mass fraction(SMF)were almost greater than 1,whereas opposite results were found in the leaves.Compared with full irradiance,the average stem length(SL),leaf area ratio(LAR)and specific leaf area(SLA)for the two years(2013 and 2014)increased by 0.78,0.47 and 0.65 under shady conditions,respectively.However,the stem diameter(SD),total biomass(TB),leaf area(LA),number of nodes(NN)on the main stem,and number of branches(BN)all decreased.During the shady period,the SL and SMF exhibited a significant negative correlation with yield,and the SD exhibited a significant positive correlation with yield.The correlation between the soybean yield and agronomic parameters during the mature period,except for SL,the first pod height(FPH),100-seed weight(100-SW),and reproductive growth period(RGP),were significant(P〈0.01),especially for seed weight per branch(SWB),pods per plant(PP),BN,and vegetative growth period(VGP).These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans. 展开更多
关键词 intercropping LIGHT morphological parameters shade avoidance soybean
下载PDF
Plant Phosphorus Uptake in a Soybean-Citrus Intercropping System in the Red Soil Hilly Region of South China 被引量:8
7
作者 ZHOU Wei-Jun ZHANG Yang-Zhu +3 位作者 WANG Kai-Rong LI He-Song HAO Yin-Ju LIU Xin 《Pedosphere》 SCIE CAS CSCD 2009年第2期244-250,共7页
A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the ... A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the 32P tracer technique.P fertilizer was applied at three depths(15,35,and 55 cm).The experimental results showed that the planting pattern and 32P application depth significantly affected the characteristics of P uptake by soybean and citrus.Under the soybean-citrus intercropping system,considerable competition was observed when the 32P fertilizer was applied to the topsoil(15 cm);therefore,the 32P recovery rate declined by 41.5%and 14.7%for soybean and citrus,and 32P supplying amount of topsoil to soybean and citrus decreased by 346.8 and 148.1 mg plot-1,respectively,compared to those under the monoculture.However,32P recovery of soybean was promoted when 32P fertilizer was applied to the deeper soil layers (35 and 55 cm)under soybean-citrus intercropping.Under the soybean monoculture,32P fertilizer could hardly be used by soybean when 32P fertilizer was applied at the 55 cm depth or below,with the recovery rate being less than 0.1%;it was up to 0.253%by soybean under intercropping.The higher P recovery of soybean under soybean-citrus intercropping when P was applied in the deeper soil layers was because part of the P nutrient that the citrus absorbed from the deeper soil layers could be released into the topsoil and then it could be used by the soybean. 展开更多
关键词 CITRUS intercropping MONOCULTURE P uptake soybean
下载PDF
Suitability of the DNDC model to simulate yield production and nitrogen uptake for maize and soybean intercropping in the North China Plain 被引量:5
8
作者 ZHANG Yi-tao LIU Jian +5 位作者 WANG Hong-yuan LEI Qiu-liang LIU Hong-bin ZHAI Li-mei REN Tian-zhi ZHANG Ji-zong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第12期2790-2801,共12页
Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeC... Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeComposition(DNDC) model to simulate intercropping of maize(Zea mays L.) and soybean(Glycine max L.) and its aftereffect on the succeeding wheat(Triticum aestivum L.) crop was tested in the North China Plain. First, the model was calibrated and corroborated to simulate crop yield and nitrogen(N) uptake based on a field experiment with a typical double cropping system. With a wheat crop in winter, the experiment included five treatments in summer: maize monoculture, soybean monoculture, intercropping of maize and soybean with no N topdressing to maize(N0), intercropping of maize and soybean with 75 kg N ha–1topdressing to maize(N75), and intercropping of maize and soybean with 180 kg N ha–1topdressing to maize(N180). All treatments had 45 kg N ha–1as basal fertilizer. After calibration and corroboration, DNDC was used to simulate long-term(1955 to 2012) treatment effects on yield. Results showed that DNDC could stringently capture the yield and N uptake of the intercropping system under all N management scenarios, though it tended to underestimate wheat yield and N uptake under N0 and N75. Long-term simulation results showed that N75 led to the highest maize and soybean yields per unit planting area among all treatments, increasing maize yield by 59% and soybean yield by 24%, resulting in a land utilization rate 42% higher than monoculture. The results suggest a high potential to promote soybean production by intercropping soybean with maize in the North China Plain, which will help to meet the large national demand for soybean. 展开更多
关键词 maize intercropping with soybean DNDC topdressing N YIELD N uptake
下载PDF
Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China 被引量:4
9
作者 TANG Yi-ling YU Ling-ling +4 位作者 GUAN Ao-mei ZHOU Xian-yu WANG Zhi-guo GOU Yong-gang WANG Jian-wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第11期2586-2596,共11页
The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of... The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system. 展开更多
关键词 sweet maize-soybean intercrop cropping system N fertilizer rate grain yield soil mineral N soil NzO emissions
下载PDF
Analysis on Waxy Corn/Soybean Intercropping Pattern and Economic Benefit 被引量:1
10
作者 秦燕 郭泓鋆 +4 位作者 杨进 赵永康 杨洪 韩庆新 李兰 《Agricultural Science & Technology》 CAS 2016年第1期48-50,共3页
The research mainly analyzed effects of waxy corn/soybean intercropping on yields of the two crops, as well as agronomic characters, and the economic benefits of the mode. The results showed that although yields of wa... The research mainly analyzed effects of waxy corn/soybean intercropping on yields of the two crops, as well as agronomic characters, and the economic benefits of the mode. The results showed that although yields of waxy corn and soybean went down by 21.19% and 31.04% per unit area, land equivalent ratio(1.48) kept higher than 1, suggesting the intercropping improves land use rate. Besides, due to the practice of intercropping, many characters of waxy corn grew, but of soybean declined. The economic benefits from high to low were waxy corn/soybean intercropping, monoculture of waxy corn, and monoculture of soybean. 展开更多
关键词 Waxy corn/soybean intercropping Land equivalent ratio Economic benefit
下载PDF
Effects of Intercropping Patterns on Dry Matter Accumulation and Transportation of Maize(Zea mays L.) and Soybean[Glycine max(L.) Merrill] 被引量:3
11
作者 杨升辉 邱家训 +4 位作者 徐长帅 李洪杰 唐汝友 王素阁 李强 《Agricultural Science & Technology》 CAS 2013年第11期1545-1549,共5页
[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 a... [Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits. 展开更多
关键词 MAIZE soybean intercropping Dry matter accumulation and transportation Yield
下载PDF
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability 被引量:49
12
作者 DU Jun-bo HAN Tian-fu +8 位作者 GAI Jun-yi YONG Tai-wen SUN Xin WANG Xiao-chun YANG Feng LIU Jiang SHU Kai LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期747-754,共8页
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogic... Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize-and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability. 展开更多
关键词 MAIZE soybean strip intercropping high production agricultural sustainability
下载PDF
Effects of intercropping systems of trees with soybean on soil physicochemical properties in juvenile plantations 被引量:6
13
作者 FAN A-nan CHEN Xiang-wei LI Zhi-min 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第3期226-230,共5页
The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The... The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation. 展开更多
关键词 intercropping systems Soil nutrient content Soil physicochemical properties larch/soybean intercropping system ash/soybean intercropping system
下载PDF
iTRAQ protein profile analysis of soybean stems reveals new aspects critical for lodging in intercropping systems 被引量:1
14
作者 LIU Wei-guo WEN Bing-xiao +6 位作者 ZHOU Tao WANG Li GAO Yang LI Shu-xian QIN Si-si LIU Jiang YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2029-2040,共12页
Soybean is often intercropped with maize,sugarcane,and sorghum.Because of the shade coming from the latter,the soybean stem lodging is often a very serious problem in intercropping systems.The aim of this study is to ... Soybean is often intercropped with maize,sugarcane,and sorghum.Because of the shade coming from the latter,the soybean stem lodging is often a very serious problem in intercropping systems.The aim of this study is to characterize the possible mechanisms in the stem of shade-induced promotion of seedling soybean lodging in intercropping systems at the proteome level.We found that the soybean stem became slender and prone to lodging when it was planted with maize in an intercropping system.The inhibition of lignin biosynthesis and lack of photosynthate(soluble sugar)for the biosynthesis of the cell wall led to the lower internode breaking strength.A total of 317 proteins were found to be affected in the soybean stem in response to shade.Under the shade stress,the down-expression of key enzymes involving the phenylpropanoid metabolic pathway inhibited lignin biosynthesis.The up-regulation of expansin and XTHs protein expression relaxed the cell wall and promoted the elongation of internodes.Although the expression of the enzymes involving sucrose synthesis increased in the soybean stem,the lack of a carbon source prevented rapid stem growth.This metabolic deficit is the principal cause of the lower cellulose content in the stem of intercropped soybean,which leads to weakened stems and a propensity for lodging. 展开更多
关键词 soybean LODGING intercropping SHADE stress lignin
下载PDF
Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community 被引量:20
15
作者 FU Zhi-dan ZHOU Li +7 位作者 CHEN Ping DU Qing PANG Ting SONG Chun WANG Xiao-chun LIU Wei-guo YANG Wen-yu YONG Tai-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2006-2018,共13页
Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency,which is widely practiced by farmers in southwest of China.To elucidate the characteristics of different... Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency,which is widely practiced by farmers in southwest of China.To elucidate the characteristics of different planting patterns on crop nutrient uptake,soil chemical properties,and soil bacteria community in maize-soybean relay intercropping systems,we conducted a field experiment in 2015–2016 with single factor treatments,including monoculture maize(MM),monoculture soybean(MS),maize-soybean relay intercropping(IMS),and fallow(CK).The results showed that the N uptake of maize grain increased in IMS compared with MM.Compared with MS,the yield and uptake of N,P,and K of soybean grain were increased by 25.5,24.4,9.6,and 22.4%in IMS,respectively,while the N and K uptakes in soybean straw were decreased in IMS.The soil total nitrogen,available phosphorus,and soil organic matter contents were significantly higher in IMS than those of the corresponding monocultures and CK.Moreover,the soil protease,soil urease,and soil nitrate reductase activities in IMS were higher than those of the corresponding monocultures and CK.The phyla Proteobacteria,Acidobacteria,Chloroflexi,and Actinobacteria dominated in all treatments.Shannon’s index in IMS was higher than that of the corresponding monocultures and CK.The phylum Proteobacteria proportion was positively correlated with maize soil organic matter and soybean soil total nitrogen content,respectively.These results indicated that the belowground interactions increased the crop nutrient(N and P)uptake and soil bacterial community diversity,both of which contributed to improved soil nutrient management for legume-cereal relay intercropping systems. 展开更多
关键词 maize-soybean RELAY intercropping nutrient uptake SOIL properties SOIL bacterial community microbial diversity
下载PDF
Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input 被引量:11
16
作者 Qing Du Li Zhou +11 位作者 Ping Chen Xiaoming Liu Chun Song Feng Yang Xiaochun Wang Weiguo Liu Xin Sun Junbo Du Jiang Liu Kai Shu Wenyu Yang Taiwen Yong 《The Crop Journal》 SCIE CAS CSCD 2020年第1期140-152,共13页
Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilizat... Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilization can help in dissecting the mechanisms underlying N uptake and utilization in legume-nonlegume intercropping systems.An experiment was performed with three planting patterns:monoculture maize(MM),monoculture soybean(SS),and maize-soybean relay intercropping(IMS),and three N application levels:zero N(NN),reduced N(RN),and conventional N(CN)to investigate crop N uptake and utilization characteristics.N recovery efficiency and 15N recovery rate of crops were higher under RN than under CN,and those under RN were higher under intercropping than under the corresponding monocultures.Compared with MM,IMS showed a lower soil N-dependent rate(SNDR)in 2012.However,the SNDR of MM rapidly declined from 86.8%in 2012 to 49.4%in 2014,whereas that of IMS declined slowly from 75.4%in 2012 to 69.4%in 2014.The interspecific N competition rate(NCRms)was higher under RN than under CN,and increased yearly.Soybean nodule dry weight and nitrogenase activities were respectively 34.2%and 12.5%higher under intercropping than in monoculture at the beginning seed stage.The amount(Ndfa)and ratio(%Ndfa)of soybean N2 fixation were significantly greater under IS than under SS.In conclusion,N fertilizer was more efficiently used under RN than under CN;in particular,the relay intercropping system promoted N fertilizer utilization in comparison with the corresponding monocultures.An intercropping system helps to maintain soil fertility because interspecific N competition promotes biological N fixation by soybean by reducing N input.Thus,a maize-soybean relay intercropping system with reduced N application is sustainable and environmentally friendly. 展开更多
关键词 Maize-soybean relay intercropping Reduced nitrogen Biological nitrogen fixation Nitrogen recovery efficiency Soil nitrogen dependent rate
下载PDF
Effects of Different Planting Pattern of Maize (<i>Zea mays</i>L.) and Soybean (<i>Glycine max</i>(L.) Merrill) Intercropping in Resource Consumption on Fodder Yield, and Silage Quality 被引量:3
17
作者 Maw Ni Soe Htet Rab Nawaz Soomro Haijiang Bo 《American Journal of Plant Sciences》 2017年第4期666-679,共14页
An experiment was carried out at the field units of the north campus experimental areas in Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, P. R. China. The experiment was conducted on summer... An experiment was carried out at the field units of the north campus experimental areas in Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, P. R. China. The experiment was conducted on summer season (June to September) to determine the effects of different planting patterns of maize and soybean intercropping in resource consumption on fodder yield and silage quality. The main treatments were one sole crop of maize (SM) and four maize-soybean intercropping patterns (1 row maize to 1 row soybean (1M1S), 1 row maize to 2 rows soybean (1M2S), 1 rows maize to 3 rows soybean (1M3S) and 2 rows maize to 1 row soybean (2M1S), respectively. The experiment was a randomized complete block design with three replications, and plot size of 12 m by 5 m. The crops were harvested when the maize reached at milk stage and soybean at R7 stage. The result indicated significant increase in fresh biomass and dry matter production of maize fodder alone as compared to maize intercropped with soybean fodder. It was correlated with a higher consumption of environmental resources, such as photosynthetically active radiation (PAR) and soil moisture by intercropping. After 45 days of ensiling period, silage samples were analyzed for pH, organic acids (Lactic, acetic, and butyric), dry matter (DM), crude protein (CP), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), calcium (Ca), sodium (Na), phosphorus (P), magnesium (Mg), and potassium (K). It was concluded that in all intercropped silages, crude protein (CP) values were higher (1M1S, 12.1%;1M2S, 12.2%;1M3S, 12.4%;2M1S, 12.1%) than the monocrop maize (SM, 8.7%) silage. Higher organic acids (p < 0.05) were produced in the 1M3S silages as compared to others silages. The study indicated that among all intercropped silages, the 1M3S (1 row maize to 3 rows soybean) was preferable according to nutrient composition than other intercropped silages. 展开更多
关键词 intercropping Patterns Maize-soybean Resource Consumption FODDER Silage Quality
下载PDF
Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition
18
作者 Tantan Zhang Yali Liu +3 位作者 Shiqiang Ge Peng Peng Hu Tang Jianwu Wang 《Journal of Integrative Agriculture》 SCIE CAS 2024年第12期4216-4236,共21页
Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions,thereby affecting straw decomposition in the soil.However,the me... Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions,thereby affecting straw decomposition in the soil.However,the mechanisms underlying changes in soil organic carbon(SOC)composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear.In this study,we conducted an in-situ microplot incubation experiment with^(13)C-labeled soybean straw residue addition in a two-factor(cropping pattern:sugarcane monoculture(MS)and sugarcane/soybean intercropping(SB);nitrogen addition levels:reduced nitrogen addition(N1)and conventional nitrogen addition(N2))long-term experimental field plot.The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon(POC)and residual microbial biomass carbon(MBC)contents during straw decomposition,and the straw carbon in soil was mainly conserved as POC.Straw addition changed the structure and reduced the diversity of the soil microbial community,but microbial diversity gradually recovered with decomposition time.During straw decomposition,the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota.In addition,straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern.Nevertheless,microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment.In general,the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition,and the changes in microbial communities were mainly driven by the residual labile SOC fractions.These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture. 展开更多
关键词 sugarcane/soybean intercropping ^(13)C-labeled straw labile SOC fractions microbial networks
下载PDF
Image-based root phenotyping for field-grown crops:An example under maize/soybean intercropping
19
作者 HUI Fang XIE Zi-wen +4 位作者 LI Hai-gang GUO Yan LI Bao-guo LIU Yun-ling MA Yun-tao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第6期1606-1619,共14页
Root architecture,which determines the water and nutrient uptake ability of crops,is highly plastic in response to soil environmental changes and different cultivation patterns.Root phenotyping for field-grown crops,e... Root architecture,which determines the water and nutrient uptake ability of crops,is highly plastic in response to soil environmental changes and different cultivation patterns.Root phenotyping for field-grown crops,especially topological trait extraction,is rarely performed.In this study,an image-based semi-automatic root phenotyping method for field-grown crops was developed.The method consisted of image acquisition,image denoising and segmentation,trait extraction and data analysis.Five global traits and 40 local traits were extracted with this method.A good consistency in 1st-order lateral root branching was observed between the visually counted values and the values extracted using the developed method,with R^(2)=0.97.Using the method,we found that the interspecific advantages for maize mainly occurred within 5 cm from the root base in the nodal roots of the 5th-7th nodes,and that the obvious inhibition of soybean was mostly reflected within 20 cm from the root base.Our study provides a novel approach with high-throughput and high-accuracy for field research on root morphology and branching features.It could be applied to the 3D reconstruction of field-grown root system architecture to improve the inputs to data-driven models(e.g.,OpenSimRoot)that simulate root growth,solute transport and water uptake. 展开更多
关键词 root phenotyping HIGH-THROUGHPUT image analysis intercropping maize(Zea mays L.) soybean(Glycine max L.)
下载PDF
滴灌下氮肥减量配施生物炭对玉米大豆间作系统光合特性和产量的影响 被引量:1
20
作者 秦德志 崔文芳 +3 位作者 陈静 刘剑 秦丽 严海欧 《大豆科学》 CAS CSCD 北大核心 2024年第3期332-341,共10页
为研究氮肥减量结合生物炭对玉米大豆间作群体光合特性和产量的影响,设置不同种植模式(玉米单作、大豆单作、玉米大豆间作)、生物炭(2,4,6 t·hm^(-2))、氮肥减量(165,210,255 kg·hm^(-2))三因素试验,采用正交试验设计方法,探... 为研究氮肥减量结合生物炭对玉米大豆间作群体光合特性和产量的影响,设置不同种植模式(玉米单作、大豆单作、玉米大豆间作)、生物炭(2,4,6 t·hm^(-2))、氮肥减量(165,210,255 kg·hm^(-2))三因素试验,采用正交试验设计方法,探讨不同种植模式氮肥减量配施生物炭的适宜用量。结果表明:单作与间作模式玉米适宜的用量分别为氮肥210与255 kg·hm^(-2),生物炭用量均为4 t·hm^(-2)。间作系统产量达到13395 kg·hm^(-2),较单作玉米下降20.13%,间作玉米、大豆较相应单作产量分别下降35.69%和56.39%,有效株数低是导致间作玉米产量下降的主要原因,而单位面积株数与单株粒数的合理调控是决定间作大豆产量高低的关键因素。间作处理IN3C2(氮肥225 kg·hm^(-2)、生物炭4 t·hm^(-2))玉米的Pn从大口期到灌浆期持续升高,在灌浆期达到峰值,大豆从开花期经历结荚期到鼓粒期持续升高,在鼓粒期达到峰值,较其它处理具有显著光合优势,且大豆在结荚期和鼓粒期表现显著的边际优势。综上,滴灌下,氮肥减量与生物炭配施,单作和间作玉米较优的氮肥用量分别为210和255 kg·hm^(-2),生物炭为4 t·hm^(-2)。 展开更多
关键词 玉米 大豆 间作 光合特性 产量
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部