期刊文献+
共找到670篇文章
< 1 2 34 >
每页显示 20 50 100
Assessing the Efficacy of Wheat-Soybean Based Intercropping System at Different Plant Densities in Bambili, Cameroon
1
作者 Lendzemo E. Tatah Jeazet K. Teitiogo +3 位作者 Oben Tom Tabi Tange D. Achiri Njualem D. Khumbah Chi Christopher Tamu 《American Journal of Plant Sciences》 CAS 2024年第4期235-251,共17页
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve... Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended. 展开更多
关键词 Competitive Ration Land Equivalence Ration INTERCROP soybean WHEAT
下载PDF
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
2
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 Nitrogen Maize/soybean FERTILIZATION intercropping Soil FIXATION
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
3
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation soybean NODULE
下载PDF
Soybean maize strip intercropping:A solution for maintaining food security in China
4
作者 Jiang Liu Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2503-2506,共4页
The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,pr... The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development. 展开更多
关键词 strip intercropping food security soybean MAIZE spatial arrangement
下载PDF
Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems 被引量:4
5
作者 WU Yu-shan YANG Feng +9 位作者 GONG Wan-zhuo Shoaib Ahmed FAN Yuan-fang WU Xiao-ling YONG Tai-wen LIU Wei-guo SHU Kai LIU Jiang DU Jun-bo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1331-1340,共10页
Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morpholog... Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morphology responds to shading(i.e.,shade tolerance or avoidance)and which features may be suitable as screening materials in relay strip intercropping.Therefore,in this study,various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.The soybean materials used in this study exhibited genetic diversity,and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08%during the shade period and from 6.44 to 52.49%during the maturity period.The ratios of shading to full irradiance in stem mass fraction(SMF)were almost greater than 1,whereas opposite results were found in the leaves.Compared with full irradiance,the average stem length(SL),leaf area ratio(LAR)and specific leaf area(SLA)for the two years(2013 and 2014)increased by 0.78,0.47 and 0.65 under shady conditions,respectively.However,the stem diameter(SD),total biomass(TB),leaf area(LA),number of nodes(NN)on the main stem,and number of branches(BN)all decreased.During the shady period,the SL and SMF exhibited a significant negative correlation with yield,and the SD exhibited a significant positive correlation with yield.The correlation between the soybean yield and agronomic parameters during the mature period,except for SL,the first pod height(FPH),100-seed weight(100-SW),and reproductive growth period(RGP),were significant(P〈0.01),especially for seed weight per branch(SWB),pods per plant(PP),BN,and vegetative growth period(VGP).These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans. 展开更多
关键词 intercropping LIGHT morphological parameters shade avoidance soybean
下载PDF
Suitability of the DNDC model to simulate yield production and nitrogen uptake for maize and soybean intercropping in the North China Plain 被引量:3
6
作者 ZHANG Yi-tao LIU Jian +5 位作者 WANG Hong-yuan LEI Qiu-liang LIU Hong-bin ZHAI Li-mei REN Tian-zhi ZHANG Ji-zong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第12期2790-2801,共12页
Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeC... Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeComposition(DNDC) model to simulate intercropping of maize(Zea mays L.) and soybean(Glycine max L.) and its aftereffect on the succeeding wheat(Triticum aestivum L.) crop was tested in the North China Plain. First, the model was calibrated and corroborated to simulate crop yield and nitrogen(N) uptake based on a field experiment with a typical double cropping system. With a wheat crop in winter, the experiment included five treatments in summer: maize monoculture, soybean monoculture, intercropping of maize and soybean with no N topdressing to maize(N0), intercropping of maize and soybean with 75 kg N ha–1topdressing to maize(N75), and intercropping of maize and soybean with 180 kg N ha–1topdressing to maize(N180). All treatments had 45 kg N ha–1as basal fertilizer. After calibration and corroboration, DNDC was used to simulate long-term(1955 to 2012) treatment effects on yield. Results showed that DNDC could stringently capture the yield and N uptake of the intercropping system under all N management scenarios, though it tended to underestimate wheat yield and N uptake under N0 and N75. Long-term simulation results showed that N75 led to the highest maize and soybean yields per unit planting area among all treatments, increasing maize yield by 59% and soybean yield by 24%, resulting in a land utilization rate 42% higher than monoculture. The results suggest a high potential to promote soybean production by intercropping soybean with maize in the North China Plain, which will help to meet the large national demand for soybean. 展开更多
关键词 maize intercropping with soybean DNDC topdressing N YIELD N uptake
下载PDF
Plant Phosphorus Uptake in a Soybean-Citrus Intercropping System in the Red Soil Hilly Region of South China 被引量:7
7
作者 ZHOU Wei-Jun ZHANG Yang-Zhu +3 位作者 WANG Kai-Rong LI He-Song HAO Yin-Ju LIU Xin 《Pedosphere》 SCIE CAS CSCD 2009年第2期244-250,共7页
A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the ... A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the 32P tracer technique.P fertilizer was applied at three depths(15,35,and 55 cm).The experimental results showed that the planting pattern and 32P application depth significantly affected the characteristics of P uptake by soybean and citrus.Under the soybean-citrus intercropping system,considerable competition was observed when the 32P fertilizer was applied to the topsoil(15 cm);therefore,the 32P recovery rate declined by 41.5%and 14.7%for soybean and citrus,and 32P supplying amount of topsoil to soybean and citrus decreased by 346.8 and 148.1 mg plot-1,respectively,compared to those under the monoculture.However,32P recovery of soybean was promoted when 32P fertilizer was applied to the deeper soil layers (35 and 55 cm)under soybean-citrus intercropping.Under the soybean monoculture,32P fertilizer could hardly be used by soybean when 32P fertilizer was applied at the 55 cm depth or below,with the recovery rate being less than 0.1%;it was up to 0.253%by soybean under intercropping.The higher P recovery of soybean under soybean-citrus intercropping when P was applied in the deeper soil layers was because part of the P nutrient that the citrus absorbed from the deeper soil layers could be released into the topsoil and then it could be used by the soybean. 展开更多
关键词 间作系统 红壤丘陵区 磷吸收 植物磷 大豆 柑桔 华南 磷回收率
下载PDF
Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China 被引量:4
8
作者 TANG Yi-ling YU Ling-ling +4 位作者 GUAN Ao-mei ZHOU Xian-yu WANG Zhi-guo GOU Yong-gang WANG Jian-wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第11期2586-2596,共11页
The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of... The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system. 展开更多
关键词 sweet maize-soybean intercrop cropping system N fertilizer rate grain yield soil mineral N soil NzO emissions
下载PDF
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability 被引量:43
9
作者 DU Jun-bo HAN Tian-fu +8 位作者 GAI Jun-yi YONG Tai-wen SUN Xin WANG Xiao-chun YANG Feng LIU Jiang SHU Kai LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期747-754,共8页
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogic... Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize-and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability. 展开更多
关键词 MAIZE soybean strip intercropping high production agricultural sustainability
下载PDF
iTRAQ protein profile analysis of soybean stems reveals new aspects critical for lodging in intercropping systems 被引量:1
10
作者 LIU Wei-guo WEN Bing-xiao +6 位作者 ZHOU Tao WANG Li GAO Yang LI Shu-xian QIN Si-si LIU Jiang YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2029-2040,共12页
Soybean is often intercropped with maize,sugarcane,and sorghum.Because of the shade coming from the latter,the soybean stem lodging is often a very serious problem in intercropping systems.The aim of this study is to ... Soybean is often intercropped with maize,sugarcane,and sorghum.Because of the shade coming from the latter,the soybean stem lodging is often a very serious problem in intercropping systems.The aim of this study is to characterize the possible mechanisms in the stem of shade-induced promotion of seedling soybean lodging in intercropping systems at the proteome level.We found that the soybean stem became slender and prone to lodging when it was planted with maize in an intercropping system.The inhibition of lignin biosynthesis and lack of photosynthate(soluble sugar)for the biosynthesis of the cell wall led to the lower internode breaking strength.A total of 317 proteins were found to be affected in the soybean stem in response to shade.Under the shade stress,the down-expression of key enzymes involving the phenylpropanoid metabolic pathway inhibited lignin biosynthesis.The up-regulation of expansin and XTHs protein expression relaxed the cell wall and promoted the elongation of internodes.Although the expression of the enzymes involving sucrose synthesis increased in the soybean stem,the lack of a carbon source prevented rapid stem growth.This metabolic deficit is the principal cause of the lower cellulose content in the stem of intercropped soybean,which leads to weakened stems and a propensity for lodging. 展开更多
关键词 soybean LODGING intercropping SHADE stress lignin
下载PDF
Effects of intercropping systems of trees with soybean on soil physicochemical properties in juvenile plantations 被引量:6
11
作者 FAN A-nan CHEN Xiang-wei LI Zhi-min 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第3期226-230,共5页
作为 ashort 术语实践,有在少年种植园的大豆的树的杂种的系统在毛在老挝人的掸人试验性的车站被使用“嗯 NortheastForestry 大学的掸人福雷斯特,哈尔滨,中国。落叶松(Larix gmelinii )/soybean (甘氨酸最大) 和杂种的灰(Fraxinus m... 作为 ashort 术语实践,有在少年种植园的大豆的树的杂种的系统在毛在老挝人的掸人试验性的车站被使用“嗯 NortheastForestry 大学的掸人福雷斯特,哈尔滨,中国。落叶松(Larix gmelinii )/soybean (甘氨酸最大) 和杂种的灰(Fraxinus mandshurica ) 系统在这块地里被学习估计在土壤上杂种的效果物理化学的性质。结果证明那个土壤物理性质在大豆在一生长期与落叶松和灰杂种以后被改进。在落叶松 / 大豆和灰 / 大豆系统的土壤体积密度是 1.112 g · c m^(-3) 和 1.058 g · c m^( 没有杂种,在纯落叶松或灰种植园比那低的 -3),respectively, 。全部的土壤孔隙度也在杂种以后增加了。有机物数量 inlarch/soybean 系统在纯落叶松种植园比那高 1.77 倍,并且它在纯灰种植园比那在灰 / 大豆系统更高是 1.09times。在落叶松 / 大豆系统的总氮和 hydrolyzable 氮的内容比在纯落叶松看台的那些高是 4.2% 和 53.0% 。在灰 / 大豆系统的总氮和 hydrolyzable 氮内容比在纯灰种植园的那些高是 75.5%and3.3% 。全部的磷内容在杂种以后减少了,当可得到的磷的变化显示出一个增加的趋势时。在落叶松 / 大豆系统的全部的钾和可得到的钾内容比在纯落叶松看台的那些高是 0.6% 和 17.5% 。在灰 / 大豆系统的全部的钾和可得到的钾内容比在纯灰种植园的那些高是 56.4% 和 21.8% 。 展开更多
关键词 林豆复合生态系统 土壤养分含量 土壤理化性质 落叶松-大豆复合生态系统 水曲柳
下载PDF
Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community 被引量:20
12
作者 FU Zhi-dan ZHOU Li +7 位作者 CHEN Ping DU Qing PANG Ting SONG Chun WANG Xiao-chun LIU Wei-guo YANG Wen-yu YONG Tai-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2006-2018,共13页
Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency,which is widely practiced by farmers in southwest of China.To elucidate the characteristics of different... Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency,which is widely practiced by farmers in southwest of China.To elucidate the characteristics of different planting patterns on crop nutrient uptake,soil chemical properties,and soil bacteria community in maize-soybean relay intercropping systems,we conducted a field experiment in 2015–2016 with single factor treatments,including monoculture maize(MM),monoculture soybean(MS),maize-soybean relay intercropping(IMS),and fallow(CK).The results showed that the N uptake of maize grain increased in IMS compared with MM.Compared with MS,the yield and uptake of N,P,and K of soybean grain were increased by 25.5,24.4,9.6,and 22.4%in IMS,respectively,while the N and K uptakes in soybean straw were decreased in IMS.The soil total nitrogen,available phosphorus,and soil organic matter contents were significantly higher in IMS than those of the corresponding monocultures and CK.Moreover,the soil protease,soil urease,and soil nitrate reductase activities in IMS were higher than those of the corresponding monocultures and CK.The phyla Proteobacteria,Acidobacteria,Chloroflexi,and Actinobacteria dominated in all treatments.Shannon’s index in IMS was higher than that of the corresponding monocultures and CK.The phylum Proteobacteria proportion was positively correlated with maize soil organic matter and soybean soil total nitrogen content,respectively.These results indicated that the belowground interactions increased the crop nutrient(N and P)uptake and soil bacterial community diversity,both of which contributed to improved soil nutrient management for legume-cereal relay intercropping systems. 展开更多
关键词 maize-soybean RELAY intercropping nutrient uptake SOIL properties SOIL bacterial community microbial diversity
下载PDF
Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input 被引量:11
13
作者 Qing Du Li Zhou +11 位作者 Ping Chen Xiaoming Liu Chun Song Feng Yang Xiaochun Wang Weiguo Liu Xin Sun Junbo Du Jiang Liu Kai Shu Wenyu Yang Taiwen Yong 《The Crop Journal》 SCIE CAS CSCD 2020年第1期140-152,共13页
Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilizat... Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilization can help in dissecting the mechanisms underlying N uptake and utilization in legume-nonlegume intercropping systems.An experiment was performed with three planting patterns:monoculture maize(MM),monoculture soybean(SS),and maize-soybean relay intercropping(IMS),and three N application levels:zero N(NN),reduced N(RN),and conventional N(CN)to investigate crop N uptake and utilization characteristics.N recovery efficiency and 15N recovery rate of crops were higher under RN than under CN,and those under RN were higher under intercropping than under the corresponding monocultures.Compared with MM,IMS showed a lower soil N-dependent rate(SNDR)in 2012.However,the SNDR of MM rapidly declined from 86.8%in 2012 to 49.4%in 2014,whereas that of IMS declined slowly from 75.4%in 2012 to 69.4%in 2014.The interspecific N competition rate(NCRms)was higher under RN than under CN,and increased yearly.Soybean nodule dry weight and nitrogenase activities were respectively 34.2%and 12.5%higher under intercropping than in monoculture at the beginning seed stage.The amount(Ndfa)and ratio(%Ndfa)of soybean N2 fixation were significantly greater under IS than under SS.In conclusion,N fertilizer was more efficiently used under RN than under CN;in particular,the relay intercropping system promoted N fertilizer utilization in comparison with the corresponding monocultures.An intercropping system helps to maintain soil fertility because interspecific N competition promotes biological N fixation by soybean by reducing N input.Thus,a maize-soybean relay intercropping system with reduced N application is sustainable and environmentally friendly. 展开更多
关键词 Maize-soybean relay intercropping Reduced nitrogen Biological nitrogen fixation Nitrogen recovery efficiency Soil nitrogen dependent rate
下载PDF
Effects of Different Planting Pattern of Maize (<i>Zea mays</i>L.) and Soybean (<i>Glycine max</i>(L.) Merrill) Intercropping in Resource Consumption on Fodder Yield, and Silage Quality 被引量:3
14
作者 Maw Ni Soe Htet Rab Nawaz Soomro Haijiang Bo 《American Journal of Plant Sciences》 2017年第4期666-679,共14页
An experiment was carried out at the field units of the north campus experimental areas in Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, P. R. China. The experiment was conducted on summer... An experiment was carried out at the field units of the north campus experimental areas in Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, P. R. China. The experiment was conducted on summer season (June to September) to determine the effects of different planting patterns of maize and soybean intercropping in resource consumption on fodder yield and silage quality. The main treatments were one sole crop of maize (SM) and four maize-soybean intercropping patterns (1 row maize to 1 row soybean (1M1S), 1 row maize to 2 rows soybean (1M2S), 1 rows maize to 3 rows soybean (1M3S) and 2 rows maize to 1 row soybean (2M1S), respectively. The experiment was a randomized complete block design with three replications, and plot size of 12 m by 5 m. The crops were harvested when the maize reached at milk stage and soybean at R7 stage. The result indicated significant increase in fresh biomass and dry matter production of maize fodder alone as compared to maize intercropped with soybean fodder. It was correlated with a higher consumption of environmental resources, such as photosynthetically active radiation (PAR) and soil moisture by intercropping. After 45 days of ensiling period, silage samples were analyzed for pH, organic acids (Lactic, acetic, and butyric), dry matter (DM), crude protein (CP), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), calcium (Ca), sodium (Na), phosphorus (P), magnesium (Mg), and potassium (K). It was concluded that in all intercropped silages, crude protein (CP) values were higher (1M1S, 12.1%;1M2S, 12.2%;1M3S, 12.4%;2M1S, 12.1%) than the monocrop maize (SM, 8.7%) silage. Higher organic acids (p < 0.05) were produced in the 1M3S silages as compared to others silages. The study indicated that among all intercropped silages, the 1M3S (1 row maize to 3 rows soybean) was preferable according to nutrient composition than other intercropped silages. 展开更多
关键词 intercropping Patterns Maize-soybean Resource Consumption FODDER Silage Quality
下载PDF
Image-based root phenotyping for field-grown crops:An example under maize/soybean intercropping
15
作者 HUI Fang XIE Zi-wen +4 位作者 LI Hai-gang GUO Yan LI Bao-guo LIU Yun-ling MA Yun-tao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第6期1606-1619,共14页
Root architecture,which determines the water and nutrient uptake ability of crops,is highly plastic in response to soil environmental changes and different cultivation patterns.Root phenotyping for field-grown crops,e... Root architecture,which determines the water and nutrient uptake ability of crops,is highly plastic in response to soil environmental changes and different cultivation patterns.Root phenotyping for field-grown crops,especially topological trait extraction,is rarely performed.In this study,an image-based semi-automatic root phenotyping method for field-grown crops was developed.The method consisted of image acquisition,image denoising and segmentation,trait extraction and data analysis.Five global traits and 40 local traits were extracted with this method.A good consistency in 1st-order lateral root branching was observed between the visually counted values and the values extracted using the developed method,with R^(2)=0.97.Using the method,we found that the interspecific advantages for maize mainly occurred within 5 cm from the root base in the nodal roots of the 5th-7th nodes,and that the obvious inhibition of soybean was mostly reflected within 20 cm from the root base.Our study provides a novel approach with high-throughput and high-accuracy for field research on root morphology and branching features.It could be applied to the 3D reconstruction of field-grown root system architecture to improve the inputs to data-driven models(e.g.,OpenSimRoot)that simulate root growth,solute transport and water uptake. 展开更多
关键词 root phenotyping HIGH-THROUGHPUT image analysis intercropping maize(Zea mays L.) soybean(Glycine max L.)
下载PDF
玉米大豆间作干物质积累和氮磷吸收利用的边际效应 被引量:1
16
作者 秦德志 崔文芳 +5 位作者 陈静 刘剑 秦丽 王利平 赵永来 王利鹤 《西南农业学报》 CSCD 北大核心 2024年第3期552-560,共9页
【目的】研究间作对玉米大豆干物质积累及氮磷吸收利用特性的影响机制,对实现玉米、大豆间作高产高效具有重要指导意义。【方法】试验设玉米单作、大豆单作、玉米大豆间作3种种植方式,分别测定玉米大口期、吐丝期和成熟期的植株氮磷积... 【目的】研究间作对玉米大豆干物质积累及氮磷吸收利用特性的影响机制,对实现玉米、大豆间作高产高效具有重要指导意义。【方法】试验设玉米单作、大豆单作、玉米大豆间作3种种植方式,分别测定玉米大口期、吐丝期和成熟期的植株氮磷积累量和大豆开花期、结荚期和成熟期的植株氮磷积累量,研究间作对玉米、大豆不同器官干物质积累及氮磷吸收积累特性,明确氮磷吸收利用的边际效应。【结果】与单作相比,间作降低了玉米干物质和氮磷的积累,促进了根系吸收氮向籽粒的分配;降低了大豆干物质积累,尤其对中行的影响大于边行,边行干物质、氮磷积累体现边际效应优势;与单作体系相比,间作使玉米大豆植株茎叶营养器官氮转移量均减少,分别降低22.13%、29.85%,转运氮对玉米籽粒氮的贡献率分别下降5.11%、17.45%,且根系吸收氮对籽粒氮的贡献率均高于转运氮对籽粒氮的贡献率。间作能够有效提高系统氮利用效率,较玉米、大豆单作分别提高2.34%、4.62倍,使系统氮效率较单作大豆提高26.82%,较单作玉米降低10.16%,玉米在系统产量中占主导地位,占系统产量的82.27%,土地当量比(LER)达到1.47,系统产量为13110 kg/hm^(2),较单作玉米下降3.96%。【结论】间作优势主要在于促进根系吸收氮向籽粒的分配,提高氮的利用效率。 展开更多
关键词 玉米 大豆 间作 氮利用效率 边际效应
下载PDF
滴灌下氮肥减量配施生物炭对玉米大豆间作系统光合特性和产量的影响
17
作者 秦德志 崔文芳 +3 位作者 陈静 刘剑 秦丽 严海欧 《大豆科学》 CAS CSCD 北大核心 2024年第3期332-341,共10页
为研究氮肥减量结合生物炭对玉米大豆间作群体光合特性和产量的影响,设置不同种植模式(玉米单作、大豆单作、玉米大豆间作)、生物炭(2,4,6 t·hm^(-2))、氮肥减量(165,210,255 kg·hm^(-2))三因素试验,采用正交试验设计方法,探... 为研究氮肥减量结合生物炭对玉米大豆间作群体光合特性和产量的影响,设置不同种植模式(玉米单作、大豆单作、玉米大豆间作)、生物炭(2,4,6 t·hm^(-2))、氮肥减量(165,210,255 kg·hm^(-2))三因素试验,采用正交试验设计方法,探讨不同种植模式氮肥减量配施生物炭的适宜用量。结果表明:单作与间作模式玉米适宜的用量分别为氮肥210与255 kg·hm^(-2),生物炭用量均为4 t·hm^(-2)。间作系统产量达到13395 kg·hm^(-2),较单作玉米下降20.13%,间作玉米、大豆较相应单作产量分别下降35.69%和56.39%,有效株数低是导致间作玉米产量下降的主要原因,而单位面积株数与单株粒数的合理调控是决定间作大豆产量高低的关键因素。间作处理IN3C2(氮肥225 kg·hm^(-2)、生物炭4 t·hm^(-2))玉米的Pn从大口期到灌浆期持续升高,在灌浆期达到峰值,大豆从开花期经历结荚期到鼓粒期持续升高,在鼓粒期达到峰值,较其它处理具有显著光合优势,且大豆在结荚期和鼓粒期表现显著的边际优势。综上,滴灌下,氮肥减量与生物炭配施,单作和间作玉米较优的氮肥用量分别为210和255 kg·hm^(-2),生物炭为4 t·hm^(-2)。 展开更多
关键词 玉米 大豆 间作 光合特性 产量
下载PDF
不同带宽行比对玉米/大豆带状间套作群体产量和氮素效率的影响
18
作者 李银水 黄翔 +6 位作者 罗金华 吕典 金晶 李必钦 秦璐 顾炽明 余常兵 《中国油料作物学报》 CAS CSCD 北大核心 2024年第4期863-871,共9页
为明确玉米/大豆带状间套作的最优配置,大田试验条件下,以单作玉米(MM)和单作大豆(MS)为对照,设置5种不同带宽行比:2 m带宽玉豆行数比为2∶2(T1)、2.4 m带宽玉豆行数比为2∶3(T2)、2.4 m带宽玉豆行数比为2∶4(T3)、2.8 m带宽玉豆行数比... 为明确玉米/大豆带状间套作的最优配置,大田试验条件下,以单作玉米(MM)和单作大豆(MS)为对照,设置5种不同带宽行比:2 m带宽玉豆行数比为2∶2(T1)、2.4 m带宽玉豆行数比为2∶3(T2)、2.4 m带宽玉豆行数比为2∶4(T3)、2.8 m带宽玉豆行数比为2∶3(T4)、2.8 m带宽玉豆行数比为2∶4(T5),研究不同带宽行比对玉米/大豆带状间套作群体产量和氮素利用效率的影响。结果表明,玉米籽粒产量总体上随着带宽增加呈现逐渐减少的趋势,大豆籽粒产量总体上随着带宽增加呈现逐渐增加的趋势;相同带宽条件下,随着玉米大豆行比增加,玉米籽粒产量下降,大豆籽粒产量增加;玉米和大豆的植株氮素吸收利用效率变化规律与籽粒产量基本相一致。与对照相比,T2有提高玉米和大豆的收获指数,增加氮素在玉米和大豆籽粒的分配比例、降低在茎秆的分配比例的趋势。综合产量、经济效益以及群体氮素吸收、分配和利用效率的表现,2.4 m带宽下种植2行玉米3行大豆为鄂西南山区玉米/大豆的最优间套作模式。 展开更多
关键词 带宽行比 玉米/大豆 带状间套作 产量 氮素效率
下载PDF
Assessing the Influence of Phosphorus Fertilization on the Growth and Yield of Maize/Soybean Intercrop by Analyzing Nitrogen Uptake
19
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第8期189-210,共22页
Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitro... Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems. 展开更多
关键词 intercropping Fertilization Chlorophyll Maize/soybeans Nitrogen
下载PDF
南充市大豆玉米带状复合种植调研报告
20
作者 杜俊波 叶鹏盛 +6 位作者 吴海英 郭昊昱 廖树琳 闫飞燕 于晓波 杨辉 孙歆 《大豆科技》 2024年第3期39-42,47,共5页
为了解南充市大豆玉米带状复合种植现状,文章以南充市南部县与西充县多个大豆玉米带状复合种植示范区为调研对象,对调研区的基本种植情况、存在问题进行调研,提出促进南充市大豆生产发展建议,包括优选良种,加强田间管理;推进西南丘区小... 为了解南充市大豆玉米带状复合种植现状,文章以南充市南部县与西充县多个大豆玉米带状复合种植示范区为调研对象,对调研区的基本种植情况、存在问题进行调研,提出促进南充市大豆生产发展建议,包括优选良种,加强田间管理;推进西南丘区小型智能农机装备研发进程;提供政策扶持,加快大豆生物育种步伐,旨在为提升南充大豆单产水平提供参考,助力南充市大豆产业发展。 展开更多
关键词 南充市 大豆玉米带状复合种植 调研报告
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部