The quantum object is in general considered as displaying both wave and particle nature. By particle is understood an item localized in a very small volume of the space, and which cannot be simultaneously in two disjo...The quantum object is in general considered as displaying both wave and particle nature. By particle is understood an item localized in a very small volume of the space, and which cannot be simultaneously in two disjoint regions of the space. By wave, to the contrary, is understood a distributed item, occupying in some cases two or more disjoint regions of the space. The quantum formalism did not explain until today the so-called “collapse” of the wave-function, i.e. the shrinking of the wave-function to one small region of the space, when a macroscopic object is encountered. This seems to happen in “which-way” experiments. A very appealing explanation for this behavior is the idea of a particle, localized in some limited part of the wave-function. The present article challenges the concept of particle. It proves in the base of a variant of the Tan, Walls and Collett experiment, that this concept leads to a situation in which the particle has to be simultaneously in two places distant from one another—situation that contradicts the very definition of a particle. Another argument is based on a modified version of the Afshar experiment, showing that the concept of particle is problematic. The concept of particle makes additional difficulties when the wave-function passes through fields. An unexpected possibility to solve these difficulties seems to arise from the cavity quantum electrodynamics studies done recently by S. Savasta and his collaborators. It involves virtual particles. One of these studies is briefly described here. Though, experimental results are needed, so that it is too soon to conclude whether it speaks in favor, or against the concept of particle.展开更多
Quantum Fisher information(QFI) plays an important role in quantum metrology,placing the ultimate limit to how precise we can estimate some unknown parameter and thus quantifying how much information we can extract.We...Quantum Fisher information(QFI) plays an important role in quantum metrology,placing the ultimate limit to how precise we can estimate some unknown parameter and thus quantifying how much information we can extract.We observe that both the wave and particle properties within a Mach–Zehnder interferometer can naturally be quantified by QFI.Firstly,the particle property can be quantified by how well one can estimate the a priori probability of the path taken by the particle within the interferometer.Secondly,as the interference pattern is always related to some phase difference,the wave property can be quantified by how well one can estimate the phase parameter of the original state.With QFI as the unified figure of merit for both properties,we propose a more general and stronger wave-particle duality relation than the original one derived by Englert.展开更多
As a fundamental characteristic of physical entities,wave-particle duality describes whether a microscopic entity exhibits wave or particle attributes depending on the specific experimental setup.This assumption is pr...As a fundamental characteristic of physical entities,wave-particle duality describes whether a microscopic entity exhibits wave or particle attributes depending on the specific experimental setup.This assumption is premised on the notion that physical properties are inseparable from the objective carrier.However,after the concept of the quantum Cheshire cats was proposed,which makes the separation of physical attributes from the entity possible,the premise no longer holds.Furthermore,an experimental demonstration of the separation of the wave and particle attributes inspired by this scenario remains scarce.In this work,we experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept for the first time.By applying a weak disturbance to the evolution of the system,we achieve an effect similar to the quantum Cheshire cat and demonstrated the separation of the wave and particle attributes via the extraction of weak values.Our work provides a new perspective for the in-depth understanding of wave-particle duality and promotes the application of weak measurements in fundamentals of quantum mechanics.展开更多
On the question of wave-particle duality, from the historic Bohr-Einstein debates a century ago, to this day, the view expressed in Niels Bohr’s Complementarity Principle has become well established, confirmed by num...On the question of wave-particle duality, from the historic Bohr-Einstein debates a century ago, to this day, the view expressed in Niels Bohr’s Complementarity Principle has become well established, confirmed by numerous experiments: If the observation is for wave nature, then the particle changes to wave, and if the observation is for particle nature, then the particle remains particle. However, recently this view has been challenged. With proof based on the definition of wave function, it has been shown that particle always remains particle and its wave function always remains wave, no mysterious change from particle to wave and vice versa.展开更多
Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples a...Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples are selected for discussion in this paper: i) The proposed wave-particle duality of electrons;ii) cold fusion;and iii) superconductivity. The current interpretations of these enigmatic concepts are incomplete and not fully validated by scientific methods. The observations underlying these processes are seemingly consistent with KELEA acting as a repelling force between opposite electrical charges. Relatively simple experiments can be designed to either confirm or exclude KELEA in these and in various other currently perplexing physical phenomena.展开更多
The wave-particle duality relation derived by Englert sets an upper bound of the extractable information from wave and particle properties in a two-path interferometer.Surprisingly,previous studies demonstrated that t...The wave-particle duality relation derived by Englert sets an upper bound of the extractable information from wave and particle properties in a two-path interferometer.Surprisingly,previous studies demonstrated that the introduction of a quantum beamsplitter in the interferometer could break the limitation of this upper bound,due to interference between wave and particle states.Along the other line,a lot of efforts have been made to generalize this relation from the two-path setup to the N-path case.Thus,it is an interesting question that whether a quantum N-path beamsplitter can break the limitation as well.This paper systemically studies the model of a quantum N-path beamsplitter,and finds that the generalized wave-particle duality relation between interference visibility and path distinguishability is also broken in certain situations.We further study the maximal extractable information's reliance on the interference between wave and particle properties,and derive a quantitative description.We then propose an experimental methodology to verify the break of the limitation.Our work reflects the effect of quantum superposition on wave-particle duality,and exhibits a new aspect of the relation between visibility and path distinguishability in N-path interference.Moreover,it implies the observer's influence on wave-particle duality.展开更多
An experimental scheme to simultaneously obtain the information of fringe visibility and path predictability is designed. In a modified Young's double-slit experiment, two density filters rotating at different freque...An experimental scheme to simultaneously obtain the information of fringe visibility and path predictability is designed. In a modified Young's double-slit experiment, two density filters rotating at different frequencies are placed before the two pineholes to encode path information. The spatial and temporal distributions of the output provide us with the wave and particle information of the single photons, respectively. The simultaneous measurement of the wave and particle information inevitably disturbs the system and thus causes some loss of the duality information, which is equal to the mixedness of the photonic state behind the density filters.展开更多
One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We p...One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid;(2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane;(3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell’s equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.展开更多
This paper introduces a framework of in-out duality, merging insights from quantum mechanics with social sciences to illuminate the complex interplay between internal potentialities and external manifestations. It art...This paper introduces a framework of in-out duality, merging insights from quantum mechanics with social sciences to illuminate the complex interplay between internal potentialities and external manifestations. It articulates foundational, mathematical axioms (Entanglement, Homogeneity, Emergence, and Measurement) that underpin the dynamics of systems, emphasizing the interconnectedness and emergent behaviors resulting from internal and external interactions. By exploring quantum concepts like coherence, entanglement, and superposition, the paper proposes an interdisciplinary approach termed Quantum Social Mechanics. This approach challenges classical paradigms, advocating for a reevaluation of conventional notions through the lens of quantum principles. The paper argues that understanding the universe’s complexities requires a synthesis of motion states and potential states, suggesting a paradigm shift towards integrating quantum mechanics into the philosophical foundation of social theory. Through this comprehensive framework, the paper aims to foster a deeper understanding of the universe’s interconnected nature and the dynamic processes that govern the emergence of complex systems and behaviors.展开更多
Interference of light and material particles is described with a unified model which does not need to assume the wave-particle duality. A moving particle is associated with a region of spatial correlated points named ...Interference of light and material particles is described with a unified model which does not need to assume the wave-particle duality. A moving particle is associated with a region of spatial correlated points named coherence cone. Its geometry depends on photon or particle momentum and on the parameters of the experimental setup. The final interference pattern is explained as a spatial distribution of particles caused by the coherence cone geometry. In the present context, the wave front superposition principle, wave-particle duality and wave-collapse lose their meaning. Fits of observed single electron and single molecule interference patterns together with the simulation of expected near-field molecule interference (Talbot carpet) demonstrate the model validity.展开更多
Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of...Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of any diffraction and interference process. In the case of Wave Mechanics, de Broglie’s merging of Maupertuis’s and Fermat’s principles (see Section 3) provides, without resorting to the probability-based guidance-laws and flow-lines of the Bohmian theory, the simple law addressing particles along the Helmholtz rays of the relevant matter waves. The purpose of the present research was to derive the exact Hamiltonian ray-trajectory systems concerning, respectively, classical electromagnetic waves, non-relativistic matter waves and relativistic matter waves. We faced then, as a typical example, the numerical solution of non-relativistic wave-mechanical equation systems in a number of numerical applications, showing that each particle turns out to “dances a wave-mechanical dance” around its classical trajectory, to which it reduces when the ray-coupling is neglected. Our approach reaches the double goal of a clear insight into the mechanism of wave-particle duality and of a reasonably simple computability. We finally compared our exact dynamical approach, running as close as possible to Classical Mechanics, with the hydrodynamic Bohmian theory, based on fluid-like “guidance laws”.展开更多
The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations fo...The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.展开更多
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu...The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.展开更多
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu...The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.展开更多
双碳政策推动下,乡村农业综合能源系统(integrated energy system,IES)的多能耦合关系更加复杂。为实现农业园区可靠运行,提出面向生态农业IES的多能互补与低碳运行优化调度策略。首先,基于农业园区的能量流动关系,建立沼气生产环节、...双碳政策推动下,乡村农业综合能源系统(integrated energy system,IES)的多能耦合关系更加复杂。为实现农业园区可靠运行,提出面向生态农业IES的多能互补与低碳运行优化调度策略。首先,基于农业园区的能量流动关系,建立沼气生产环节、多能耦合供应环节以及柔性负荷需求响应环节的数学模型。其次,考虑光伏、负荷和沼气的不确定性,建立生态农业IES两阶段鲁棒优化模型。模型引入碳排放成本和启停成本,可降低农业生产碳排放,防止机组频繁启停。然后,采用列与约束生成算法(column-and-constraint generation,C&CG),结合强对偶定理与线性化理论实现模型求解。最后,基于江西省某生态牧场IES进行算例仿真,验证所提策略的有效性。仿真结果表明,所提策略可实现生态农业IES的协调运行,提高系统经济性、低碳性和能效性。展开更多
文摘The quantum object is in general considered as displaying both wave and particle nature. By particle is understood an item localized in a very small volume of the space, and which cannot be simultaneously in two disjoint regions of the space. By wave, to the contrary, is understood a distributed item, occupying in some cases two or more disjoint regions of the space. The quantum formalism did not explain until today the so-called “collapse” of the wave-function, i.e. the shrinking of the wave-function to one small region of the space, when a macroscopic object is encountered. This seems to happen in “which-way” experiments. A very appealing explanation for this behavior is the idea of a particle, localized in some limited part of the wave-function. The present article challenges the concept of particle. It proves in the base of a variant of the Tan, Walls and Collett experiment, that this concept leads to a situation in which the particle has to be simultaneously in two places distant from one another—situation that contradicts the very definition of a particle. Another argument is based on a modified version of the Afshar experiment, showing that the concept of particle is problematic. The concept of particle makes additional difficulties when the wave-function passes through fields. An unexpected possibility to solve these difficulties seems to arise from the cavity quantum electrodynamics studies done recently by S. Savasta and his collaborators. It involves virtual particles. One of these studies is briefly described here. Though, experimental results are needed, so that it is too soon to conclude whether it speaks in favor, or against the concept of particle.
文摘Quantum Fisher information(QFI) plays an important role in quantum metrology,placing the ultimate limit to how precise we can estimate some unknown parameter and thus quantifying how much information we can extract.We observe that both the wave and particle properties within a Mach–Zehnder interferometer can naturally be quantified by QFI.Firstly,the particle property can be quantified by how well one can estimate the a priori probability of the path taken by the particle within the interferometer.Secondly,as the interference pattern is always related to some phase difference,the wave property can be quantified by how well one can estimate the phase parameter of the original state.With QFI as the unified figure of merit for both properties,we propose a more general and stronger wave-particle duality relation than the original one derived by Englert.
基金supported by the Innovation Program for Quantum Science and Technology(Nos.2021ZD0301200 and 2021ZD0301400)National Natural Science Foundation of China(Grant Nos.11821404,61725504,U19A2075,61975195,11875167,12275136,and 12075001)+1 种基金Anhui Initiative in Quantum Information Technologies(Grant No.AHY060300)Fundamental Research Funds for the Central Universities(Grant No.WK2030380017).
文摘As a fundamental characteristic of physical entities,wave-particle duality describes whether a microscopic entity exhibits wave or particle attributes depending on the specific experimental setup.This assumption is premised on the notion that physical properties are inseparable from the objective carrier.However,after the concept of the quantum Cheshire cats was proposed,which makes the separation of physical attributes from the entity possible,the premise no longer holds.Furthermore,an experimental demonstration of the separation of the wave and particle attributes inspired by this scenario remains scarce.In this work,we experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept for the first time.By applying a weak disturbance to the evolution of the system,we achieve an effect similar to the quantum Cheshire cat and demonstrated the separation of the wave and particle attributes via the extraction of weak values.Our work provides a new perspective for the in-depth understanding of wave-particle duality and promotes the application of weak measurements in fundamentals of quantum mechanics.
文摘On the question of wave-particle duality, from the historic Bohr-Einstein debates a century ago, to this day, the view expressed in Niels Bohr’s Complementarity Principle has become well established, confirmed by numerous experiments: If the observation is for wave nature, then the particle changes to wave, and if the observation is for particle nature, then the particle remains particle. However, recently this view has been challenged. With proof based on the definition of wave function, it has been shown that particle always remains particle and its wave function always remains wave, no mysterious change from particle to wave and vice versa.
文摘Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples are selected for discussion in this paper: i) The proposed wave-particle duality of electrons;ii) cold fusion;and iii) superconductivity. The current interpretations of these enigmatic concepts are incomplete and not fully validated by scientific methods. The observations underlying these processes are seemingly consistent with KELEA acting as a repelling force between opposite electrical charges. Relatively simple experiments can be designed to either confirm or exclude KELEA in these and in various other currently perplexing physical phenomena.
基金the National Natural Science Foundation of China(Grant No.61632021).
文摘The wave-particle duality relation derived by Englert sets an upper bound of the extractable information from wave and particle properties in a two-path interferometer.Surprisingly,previous studies demonstrated that the introduction of a quantum beamsplitter in the interferometer could break the limitation of this upper bound,due to interference between wave and particle states.Along the other line,a lot of efforts have been made to generalize this relation from the two-path setup to the N-path case.Thus,it is an interesting question that whether a quantum N-path beamsplitter can break the limitation as well.This paper systemically studies the model of a quantum N-path beamsplitter,and finds that the generalized wave-particle duality relation between interference visibility and path distinguishability is also broken in certain situations.We further study the maximal extractable information's reliance on the interference between wave and particle properties,and derive a quantitative description.We then propose an experimental methodology to verify the break of the limitation.Our work reflects the effect of quantum superposition on wave-particle duality,and exhibits a new aspect of the relation between visibility and path distinguishability in N-path interference.Moreover,it implies the observer's influence on wave-particle duality.
基金Supported by the National Science Foundation(INSPIRE CREATIV)under Grant No PHY-1241032the Robert A.Welch Foundation under Grant No A-1261the National Natural Science Foundation of China under Grant No 11664018
文摘An experimental scheme to simultaneously obtain the information of fringe visibility and path predictability is designed. In a modified Young's double-slit experiment, two density filters rotating at different frequencies are placed before the two pineholes to encode path information. The spatial and temporal distributions of the output provide us with the wave and particle information of the single photons, respectively. The simultaneous measurement of the wave and particle information inevitably disturbs the system and thus causes some loss of the duality information, which is equal to the mixedness of the photonic state behind the density filters.
文摘One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid;(2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane;(3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell’s equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.
文摘This paper introduces a framework of in-out duality, merging insights from quantum mechanics with social sciences to illuminate the complex interplay between internal potentialities and external manifestations. It articulates foundational, mathematical axioms (Entanglement, Homogeneity, Emergence, and Measurement) that underpin the dynamics of systems, emphasizing the interconnectedness and emergent behaviors resulting from internal and external interactions. By exploring quantum concepts like coherence, entanglement, and superposition, the paper proposes an interdisciplinary approach termed Quantum Social Mechanics. This approach challenges classical paradigms, advocating for a reevaluation of conventional notions through the lens of quantum principles. The paper argues that understanding the universe’s complexities requires a synthesis of motion states and potential states, suggesting a paradigm shift towards integrating quantum mechanics into the philosophical foundation of social theory. Through this comprehensive framework, the paper aims to foster a deeper understanding of the universe’s interconnected nature and the dynamic processes that govern the emergence of complex systems and behaviors.
文摘Interference of light and material particles is described with a unified model which does not need to assume the wave-particle duality. A moving particle is associated with a region of spatial correlated points named coherence cone. Its geometry depends on photon or particle momentum and on the parameters of the experimental setup. The final interference pattern is explained as a spatial distribution of particles caused by the coherence cone geometry. In the present context, the wave front superposition principle, wave-particle duality and wave-collapse lose their meaning. Fits of observed single electron and single molecule interference patterns together with the simulation of expected near-field molecule interference (Talbot carpet) demonstrate the model validity.
文摘Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of any diffraction and interference process. In the case of Wave Mechanics, de Broglie’s merging of Maupertuis’s and Fermat’s principles (see Section 3) provides, without resorting to the probability-based guidance-laws and flow-lines of the Bohmian theory, the simple law addressing particles along the Helmholtz rays of the relevant matter waves. The purpose of the present research was to derive the exact Hamiltonian ray-trajectory systems concerning, respectively, classical electromagnetic waves, non-relativistic matter waves and relativistic matter waves. We faced then, as a typical example, the numerical solution of non-relativistic wave-mechanical equation systems in a number of numerical applications, showing that each particle turns out to “dances a wave-mechanical dance” around its classical trajectory, to which it reduces when the ray-coupling is neglected. Our approach reaches the double goal of a clear insight into the mechanism of wave-particle duality and of a reasonably simple computability. We finally compared our exact dynamical approach, running as close as possible to Classical Mechanics, with the hydrodynamic Bohmian theory, based on fluid-like “guidance laws”.
基金National Natural Science Foundation of China(Nos.40774078,40404012,40674076,40474064)the Visiting Scholar Foundation of State Key Laboratory of Space Weather,Chinese Academy of Sciences
文摘The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.
文摘The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.
文摘The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.
文摘双碳政策推动下,乡村农业综合能源系统(integrated energy system,IES)的多能耦合关系更加复杂。为实现农业园区可靠运行,提出面向生态农业IES的多能互补与低碳运行优化调度策略。首先,基于农业园区的能量流动关系,建立沼气生产环节、多能耦合供应环节以及柔性负荷需求响应环节的数学模型。其次,考虑光伏、负荷和沼气的不确定性,建立生态农业IES两阶段鲁棒优化模型。模型引入碳排放成本和启停成本,可降低农业生产碳排放,防止机组频繁启停。然后,采用列与约束生成算法(column-and-constraint generation,C&CG),结合强对偶定理与线性化理论实现模型求解。最后,基于江西省某生态牧场IES进行算例仿真,验证所提策略的有效性。仿真结果表明,所提策略可实现生态农业IES的协调运行,提高系统经济性、低碳性和能效性。