The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by a...The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.展开更多
Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrat...Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.展开更多
A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established throu...A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.展开更多
In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement f...In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement field. For the WG methods, we define the weak function and the weak differential operator in an optimal polynomial approximation spaces. The optimal error estimates are given and numerical results are presented to demonstrate the efficiency and the accuracy of the weak Galerkin finite element method.展开更多
This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian u...This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian updating scheme is used in combination with arc-length method,and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates.The formulation of the shell model and beam model are based on the basic concept of Ahmad.The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates.Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation.Parametric studies on the effects of the height-to-breadth ratio,lamination schemes,positions,distribution,number of the stiffeners on the bifurcation and post-buckling behavior are performed.展开更多
The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed w...The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects;2) upper-bound solutions;3) accurate solutions and higher convergence rates;4) insensitivity to mesh distortion;5) Jacobian?free;6) volumetric-locking-free;and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on Al-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.51178247 and 50778104)the National High Technology Research and Development Program of China (Grant No.2009AA04Z401)
文摘The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.
基金Project(51508562)supported by the National Natural Science Foundation of ChinaProject(ZK18-03-49)supported by the Scientific Research Program of National University of Defense Technology,China
文摘Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.
文摘A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.
基金The authors would like to thank China National Natural Science Foundation (91630201, U1530116, 11726102, 11771179), and the Program for Cheung Kong Scholars of Ministry of Education of China, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, 3ilin University, Changchun, 130012, P.R. China.
文摘In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement field. For the WG methods, we define the weak function and the weak differential operator in an optimal polynomial approximation spaces. The optimal error estimates are given and numerical results are presented to demonstrate the efficiency and the accuracy of the weak Galerkin finite element method.
基金supported by the National Natural Science Foundation of China(Nos.12202148,12172136)the Natural Science Foundation of Guangdong Province(No.2021A1515010279)+1 种基金the National Science Fund for Distinguished Young Scholar(No.11925203)the Science and Technology Project of Guangzhou(No.202102020656).
文摘This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian updating scheme is used in combination with arc-length method,and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates.The formulation of the shell model and beam model are based on the basic concept of Ahmad.The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates.Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation.Parametric studies on the effects of the height-to-breadth ratio,lamination schemes,positions,distribution,number of the stiffeners on the bifurcation and post-buckling behavior are performed.
文摘The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects;2) upper-bound solutions;3) accurate solutions and higher convergence rates;4) insensitivity to mesh distortion;5) Jacobian?free;6) volumetric-locking-free;and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on Al-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.