This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block,on the geochemical compositions,zircon LA-ICP-MS U-Pb ages and Hf isotopic data.The Jiaoping...This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block,on the geochemical compositions,zircon LA-ICP-MS U-Pb ages and Hf isotopic data.The Jiaopingdu gabbro gives the age of 1721±5 Ma,the Caiyuanzi granite 1732±6 Ma and 1735±4 Ma,and the Wenjiacun porphyry granite 1713±4 Ma,suggesting nearly contemporaneous formation time of the gabbro and granite.The bimodal feature is demonstrated by the gabbro Si O2 content of 44.64-46.87 wt%and granite 73.81-77.03 wt%.In addition,the granite has high content of Si O2 and Na2 O+K2 O,low content of Al2 O3 and Ca O,enriched in REEs(except Eu)and Zr,Nb,Ga and Y,depleted in Sr,implying it belongs to A-type granite geochemistry and origin of within-plate environment.The zirconε(Hf)(t)of the granite and gabbro is at the range of 2-6,which is near the 2.0 Ga evolution line of the crust,implying the parent magma of the gabbro being derived from the depleted mantle and a small amount of crustal material,and the parent magma of the granite from partial melting of the juvenile crust and some ancient crustal material at the same time.Compared with 1.8-1.7 Ga magmatism during breakup of other cratons in the world,we can deduce that the Columbia has initially broken since ca.1.8 Ga,and some continental marginal or intra-continental rifts occurred at ca.1.73 Ga.展开更多
The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and break...The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).展开更多
Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous doc...Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.展开更多
The research on dyke swarms is very important,for it can not only shed light on within-plate geological processes of some regions but also contribute to our understanding on evolution of a specific orogenic belt.The Y...The research on dyke swarms is very important,for it can not only shed light on within-plate geological processes of some regions but also contribute to our understanding on evolution of a specific orogenic belt.The Yangtze Block,展开更多
Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that ...Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that the ELIP age, duration, scale and generation mechanism are still controversial. Among those scientific topics, some scholars suggest that ELIP is an example of up-doming prior to LIP formation, which was evidenced by: (1) The thickness of the Yangxin Formation (P^v) limestone unit, which lies directly beneath ELIP, reduces from the center of erosional area to the outer edge. (2) Paleo-karst surfaces are present. (3) The clastic rocks of alluvial fan deposits, from the eroded materials in the maximum uplifted area, developed surrounding the inner zone. However, other scholars urge that those so-called "alluvial fan" deposits are "hydromagmatic deposits", erupted or emplaced at or near sea level, and conclude that there was no pre-emptive uplift in ELIP. In order to constrain the above-mentioned scientific issue, we conducted detailed field geological investigations and systematically measured geological sections to provide new evidence by using sedimentary data.展开更多
Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate s...Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate.展开更多
The western Yunnan area is a natural laboratory with fully developed and best preserved Tethyan orogen in the world. Seismic tomography reveals a slab-like high velocity anomaly down to 250 km beneath the western Yunn...The western Yunnan area is a natural laboratory with fully developed and best preserved Tethyan orogen in the world. Seismic tomography reveals a slab-like high velocity anomaly down to 250 km beneath the western Yunnan Tethyan orogen, to its west there is a low-velocity column about 300 km wide. in the region from Lancangjiang to Mojiang an obvious low velocity in the lower crust and uppermost mantle overlies on the slab. Synthesizing the available geological and geochemical results, the present paper demonstrates that this slab-like high velocity anomaly is a part of the subducted plate of Yangtze Continental segment after the closure of Paleotethys. The collision of India and Eurasia continent starting from 50-60 MaBP might trigger thermal disturbance in the upper mantle and cause the uprising of asthenosphere, in that case the subducted Yangtze plate could be broken off, causing Cenozoic magmatic activities and underplating in the Lancangjiang-Mojiang region.展开更多
The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable envi...The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable environment. They are termed as the Kunyang Group, the Huili Group, and the Dongchuan Group respectively in different regions. We performed zircon U-Pb da- ting of the tuff from the groups. The results, coupled with the detrital zircon U-Pb ages of clastic rocks from the Kunyang Group and the Dongchuan Group, indicate that the sedimentation ages of the Kunyang Group and the Huili Group range from 1050 to 1000 Ma and that the Kunyang Group and the Huili Group belong to a sedimentary association with contemporaneous heterotopic facies. The detrital zircon ages and Hf isotope compositions reveal that the clastic materials in the Kunyang Group and the Huili Group are derived primarily from the Cathaysia massif. Zircons of the tuff in the Dongchuan Group yields an age of ca. 1.5 Ga and all the zircon ages of clastics in the Dongchuan Group are older than 1.5 Ga, indicating that the sedimentation of the Dongchuan Group occurred during the late Mesoproterozoic Changcheng Period. Age spectra of the detrital zircons in- dicate that the clastic materials of the Dongchuan Group are derived primarily from the ancient basement of the Yangtze mas- sif. A systematic Hf isotope determination of various types of zircons in the above three stratigraphic units shows that there is a rapid elevation in the initial Hf value of zircon at -1.5 and 1.0 Ga. Previous studies on the sedimentary characteristics of the Kunyang Group and the Huili Group show that both were deposited in a foreland basin. Combining our data with previous studies, we suggest that the Kunyang Group and the Huili Group are foreland basin sedimentary successions formed along the southern side of the Yangtze massif after an amalgamation between the Yangtze massif and the Cathaysia massif during the Grenvillian. The assembly of the Yangtze massif and the Cathaysia massif developed gradually from the west to the east and was finally completed in the eastern segment of the Yangtze massif at 0.9 Ga, representing the last stage of the Rodinia super- continent assembly, Hf isotope compositions in zircon indicate that the supercontinent cycle has an intimate relation with crus- tal growth.展开更多
The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning a...The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic.展开更多
ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze ...ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.展开更多
基金jointly project is jointly supported by the Key Research and Development Program of China(grant No.2016YFC0601001)the China Geological Survey project(DD20190002 and DD20190005)National Natural Science Foundation of China(grant No.41472082)。
文摘This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block,on the geochemical compositions,zircon LA-ICP-MS U-Pb ages and Hf isotopic data.The Jiaopingdu gabbro gives the age of 1721±5 Ma,the Caiyuanzi granite 1732±6 Ma and 1735±4 Ma,and the Wenjiacun porphyry granite 1713±4 Ma,suggesting nearly contemporaneous formation time of the gabbro and granite.The bimodal feature is demonstrated by the gabbro Si O2 content of 44.64-46.87 wt%and granite 73.81-77.03 wt%.In addition,the granite has high content of Si O2 and Na2 O+K2 O,low content of Al2 O3 and Ca O,enriched in REEs(except Eu)and Zr,Nb,Ga and Y,depleted in Sr,implying it belongs to A-type granite geochemistry and origin of within-plate environment.The zirconε(Hf)(t)of the granite and gabbro is at the range of 2-6,which is near the 2.0 Ga evolution line of the crust,implying the parent magma of the gabbro being derived from the depleted mantle and a small amount of crustal material,and the parent magma of the granite from partial melting of the juvenile crust and some ancient crustal material at the same time.Compared with 1.8-1.7 Ga magmatism during breakup of other cratons in the world,we can deduce that the Columbia has initially broken since ca.1.8 Ga,and some continental marginal or intra-continental rifts occurred at ca.1.73 Ga.
文摘The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).
基金financially supported by the National Natural Science Foundation of China(grant No. 41402103,41502114 and 41372124)
文摘Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.
文摘The research on dyke swarms is very important,for it can not only shed light on within-plate geological processes of some regions but also contribute to our understanding on evolution of a specific orogenic belt.The Yangtze Block,
基金supported by the China Geological Survey project(grant No.1212011120623)
文摘Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that the ELIP age, duration, scale and generation mechanism are still controversial. Among those scientific topics, some scholars suggest that ELIP is an example of up-doming prior to LIP formation, which was evidenced by: (1) The thickness of the Yangxin Formation (P^v) limestone unit, which lies directly beneath ELIP, reduces from the center of erosional area to the outer edge. (2) Paleo-karst surfaces are present. (3) The clastic rocks of alluvial fan deposits, from the eroded materials in the maximum uplifted area, developed surrounding the inner zone. However, other scholars urge that those so-called "alluvial fan" deposits are "hydromagmatic deposits", erupted or emplaced at or near sea level, and conclude that there was no pre-emptive uplift in ELIP. In order to constrain the above-mentioned scientific issue, we conducted detailed field geological investigations and systematically measured geological sections to provide new evidence by using sedimentary data.
文摘Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate.
文摘The western Yunnan area is a natural laboratory with fully developed and best preserved Tethyan orogen in the world. Seismic tomography reveals a slab-like high velocity anomaly down to 250 km beneath the western Yunnan Tethyan orogen, to its west there is a low-velocity column about 300 km wide. in the region from Lancangjiang to Mojiang an obvious low velocity in the lower crust and uppermost mantle overlies on the slab. Synthesizing the available geological and geochemical results, the present paper demonstrates that this slab-like high velocity anomaly is a part of the subducted plate of Yangtze Continental segment after the closure of Paleotethys. The collision of India and Eurasia continent starting from 50-60 MaBP might trigger thermal disturbance in the upper mantle and cause the uprising of asthenosphere, in that case the subducted Yangtze plate could be broken off, causing Cenozoic magmatic activities and underplating in the Lancangjiang-Mojiang region.
基金supported by Chinese Geological Survey Projects (Grant Nos. 1212011121097, 1212011120130)
文摘The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable environment. They are termed as the Kunyang Group, the Huili Group, and the Dongchuan Group respectively in different regions. We performed zircon U-Pb da- ting of the tuff from the groups. The results, coupled with the detrital zircon U-Pb ages of clastic rocks from the Kunyang Group and the Dongchuan Group, indicate that the sedimentation ages of the Kunyang Group and the Huili Group range from 1050 to 1000 Ma and that the Kunyang Group and the Huili Group belong to a sedimentary association with contemporaneous heterotopic facies. The detrital zircon ages and Hf isotope compositions reveal that the clastic materials in the Kunyang Group and the Huili Group are derived primarily from the Cathaysia massif. Zircons of the tuff in the Dongchuan Group yields an age of ca. 1.5 Ga and all the zircon ages of clastics in the Dongchuan Group are older than 1.5 Ga, indicating that the sedimentation of the Dongchuan Group occurred during the late Mesoproterozoic Changcheng Period. Age spectra of the detrital zircons in- dicate that the clastic materials of the Dongchuan Group are derived primarily from the ancient basement of the Yangtze mas- sif. A systematic Hf isotope determination of various types of zircons in the above three stratigraphic units shows that there is a rapid elevation in the initial Hf value of zircon at -1.5 and 1.0 Ga. Previous studies on the sedimentary characteristics of the Kunyang Group and the Huili Group show that both were deposited in a foreland basin. Combining our data with previous studies, we suggest that the Kunyang Group and the Huili Group are foreland basin sedimentary successions formed along the southern side of the Yangtze massif after an amalgamation between the Yangtze massif and the Cathaysia massif during the Grenvillian. The assembly of the Yangtze massif and the Cathaysia massif developed gradually from the west to the east and was finally completed in the eastern segment of the Yangtze massif at 0.9 Ga, representing the last stage of the Rodinia super- continent assembly, Hf isotope compositions in zircon indicate that the supercontinent cycle has an intimate relation with crus- tal growth.
基金supported by the National Natural Science Foundation of China(40972060and41073026)the Hundred Talents Program of the Chinese Academy of Sciences
文摘The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic.
基金supported by the National Natural Science Foundation of China (Nos. 40773019 and 40821061)the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. B07039)
文摘ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.