In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci...In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.展开更多
提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的...提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。展开更多
离子反应方程式的编排比较烦琐,当对大量方程式进行编排时,需要耗费很多时间.针对这一问题,设计离子反应方程式自动编排的Microsoft Word VBA程序,该程序不仅可以便捷快速地编排离子反应方程式,而且适用于化学方程式、分子式和简单离子...离子反应方程式的编排比较烦琐,当对大量方程式进行编排时,需要耗费很多时间.针对这一问题,设计离子反应方程式自动编排的Microsoft Word VBA程序,该程序不仅可以便捷快速地编排离子反应方程式,而且适用于化学方程式、分子式和简单离子的编排,用户可以先输入无格式文本,然后选中文本,执行程序,就可以编排好,旨在减轻方程式编排的工作量.展开更多
基金supported in part by the Guangzhou Science and Technology Plan Project under Grants 2024B03J1361,2023B03J1327,and 2023A04J0361in part by the Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control under Grant OHIC2023Y10+3 种基金in part by the Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Project under Grant 2023KQNCX036in part by the Special Fund for Science and Technology Innovation Strategy of Guangdong Province(Climbing Plan)under Grant pdjh2024a226in part by the Key Discipline Improvement Project of Guangdong Province under Grant 2022ZDJS015in part by theResearch Fund of Guangdong Polytechnic Normal University under Grants 22GPNUZDJS17 and 2022SDKYA015.
文摘In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.
文摘提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。
文摘离子反应方程式的编排比较烦琐,当对大量方程式进行编排时,需要耗费很多时间.针对这一问题,设计离子反应方程式自动编排的Microsoft Word VBA程序,该程序不仅可以便捷快速地编排离子反应方程式,而且适用于化学方程式、分子式和简单离子的编排,用户可以先输入无格式文本,然后选中文本,执行程序,就可以编排好,旨在减轻方程式编排的工作量.