期刊文献+
共找到871,348篇文章
< 1 2 250 >
每页显示 20 50 100
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
1
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
下载PDF
Physiology and health assessment,risk balance,and model for endstage liver disease scores:Postoperative outcome of liver transplantation
2
作者 Raquel Hohenreuther Andresa ThoméSilveira +4 位作者 Edison Moraes Rodrigues Filho Anderson Garcez Bruna Goularth Lacerda Sabrina Alves Fernandes Claudio Augusto Marroni 《World Journal of Transplantation》 2025年第1期86-94,共9页
BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To... BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients. 展开更多
关键词 Liver transplantation Acute physiology and chronic health evaluation IV Balance of risk model for end-stage liver disease MORTALITY Intensive care unit
下载PDF
Establishment of predictive models and determinants of preoperative gastric retention in endoscopic retrograde cholangiopancreatography 被引量:2
3
作者 Ying Jia Hao-Jun Wu +3 位作者 Tang Li Jia-Bin Liu Ling Fang Zi-Ming Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2574-2582,共9页
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t... BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value. 展开更多
关键词 CHOLANGIOPANCREATOGRAPHY Gastric retention Influencing factors Predictive model ENDOSCOPE
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
4
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique Predictive modeling Surgical outcomes
下载PDF
Fractal Fractional Order Operators in Computational Techniques for Mathematical Models in Epidemiology 被引量:1
5
作者 Muhammad Farman Ali Akgül +2 位作者 Mir Sajjad Hashemi Liliana Guran Amelia Bucur 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1385-1403,共19页
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei... New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation. 展开更多
关键词 COVID-19 model fractal-fractional operator Ulam-Hyers stability existence and uniqueness numerical simulation
下载PDF
Combining lymph node ratio to develop prognostic models for postoperative gastric neuroendocrine neoplasm patients 被引量:1
6
作者 Wen Liu Hong-Yu Wu +4 位作者 Jia-Xi Lin Shu-Ting Qu Yi-Jie Gu Jin-Zhou Zhu Chun-Fang Xu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第8期3507-3520,共14页
BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)pati... BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice. 展开更多
关键词 Gastric neuroendocrine neoplasm Lymph node ratio Disease-specific survival Random survival forest Predictive model
下载PDF
Effect of information-motivation-behavioral skills model based perioperative nursing on pain in patients with gallstones 被引量:1
7
作者 Li Ma Ying Yu +2 位作者 Bin-Juan Zhao Yan-Nan Yu Yu Li 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第7期2232-2241,共10页
BACKGROUND The incidence of cholecystolithiasis is on the rise.Use of information,motivation,and behavioral skills can play a positive role in promoting changes in individual health behaviors.However,reports on the ef... BACKGROUND The incidence of cholecystolithiasis is on the rise.Use of information,motivation,and behavioral skills can play a positive role in promoting changes in individual health behaviors.However,reports on the effects of information-motivationbehavioral(IMB)skills model based high-quality nursing as a perioperative nursing intervention for patients with gallstones are nonexistent.AIM To explore the application of IMB skills model based high-quality nursing in patients with gallstones.METHODS Two hundred and sixteen patients with cholecystolithiasis treated at our hospital from January 2022 to January 2023 were enrolled and divided into a control,highquality,and combined nursing groups,with 72 patients in each group.The control,high-quality,and combination groups received conventional,high-quality,and IMB skills model based perioperative nursing services,respectively.Differences in clinical indicators,stress levels,degree of pain,emotional state,and quality of life were observed,and complications and nursing satisfaction among the three groups were evaluated.RESULTS After nursing,the time to recovery of gastrointestinal function in the high-quality and combined nursing groups was significantly shorter than that of the control group,with the recovery of gastrointestinal function being the fastest in the combined nursing group(P<0.05).After nursing intervention,cortisol and norepinephrine levels in the high-quality and combined nursing groups were closer to normal than those of the control group 24 h after surgery,with the combined nursing group having the closest to normal levels(P<0.05).After 3 and 7 d of intervention,the patients’pain significantly improved,which was more prominent in the highquality and combination groups.Meanwhile,the pain score in the combination group was significantly lower than those of the control and high-quality nursing groups(P<0.05).After nursing intervention,the emotional states of all patients improved,and the scores of patients in the combination group were significantly lower than those of the control and high-quality nursing groups.The quality of life of patients in the high-quality and combined nursing groups significantly improved after nursing intervention compared to that of the control group,with the combined nursing group having the highest quality of life score.After intervention,the incidence of complications in the high-quality and combination groups was significantly lower than that of the control group(P<0.05),but the difference between the combination and high-quality nursing groups was not significant.Nursing satisfaction of patients in the high-quality and combination groups was significantly higher than that of the control group,with the nursing satisfaction being the highest in the combination group(P<0.05).CONCLUSION IMB skills model based nursing can improve surgical stress levels,degrees of pain,emotional state,quality of life,and nursing satisfaction of patients with gallstones and reduce the incidence of complications. 展开更多
关键词 Biliary calculi Information-motivation-behavioral skills model High quality care Perioperative period PAIN Application
下载PDF
Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel 被引量:1
8
作者 Saima Rashid Fahd Jarad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2289-2327,共39页
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p... Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated. 展开更多
关键词 Measles epidemic model Atangana-Baleanu Caputo-Fabrizio differential operators existence and uniqueness qualitative analysis Newton interpolating polynomial
下载PDF
Virtual and augmented reality systems and three-dimensional printing of the renal model—novel trends to guide preoperative planning for renal cancer
9
作者 Claudia-Gabriela Moldovanu 《Asian Journal of Urology》 CSCD 2024年第4期521-529,共9页
ObjectiveThis study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal in... ObjectiveThis study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal interventions for cancer treatment.MethodsA specialized software transforms 2D medical images into precise 3D digital models, facilitating improved anatomical understanding and surgical planning. Patient-specific 3D printed anatomical models are utilized for preoperative planning, intraoperative guidance, and surgical education. AR technology enables the overlay of digital perceptions onto real-world surgical environments.ResultsPatient-specific 3D printed anatomical models have multiple applications, such as preoperative planning, intraoperative guidance, trainee education, and patient counseling. Virtual reality involves substituting the real world with a computer-generated 3D environment, while AR overlays digitally created perceptions onto the existing reality. The advances in 3D modeling technology have sparked considerable interest in their application to partial nephrectomy in the realm of renal cancer. 3D printing, also known as additive manufacturing, constructs 3D objects based on computer-aided design or digital 3D models. Utilizing 3D-printed preoperative renal models provides benefits for surgical planning, offering a more reliable assessment of the tumor's relationship with vital anatomical structures and enabling better preparation for procedures. AR technology allows surgeons to visualize patient-specific renal anatomical structures and their spatial relationships with surrounding organs by projecting CT/MRI images onto a live laparoscopic video. Incorporating patient-specific 3D digital models into healthcare enhances best practice, resulting in improved patient care, increased patient satisfaction, and cost saving for the healthcare system. 展开更多
关键词 Three-dimensional model Three-dimensional printing Augmented reality Virtual reality
下载PDF
Development and validation of a machine learning-based early prediction model for massive intraoperative bleeding in patients with primary hepatic malignancies
10
作者 Jin Li Yu-Ming Jia +4 位作者 Zhi-Lei Zhang Cheng-Yu Liu Zhan-Wu Jiang Zhi-Wei Hao Li Peng 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期90-101,共12页
BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperati... BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning. 展开更多
关键词 Primary liver cancer Intraoperative bleeding Machine learning model
下载PDF
Refinement modeling and verification of secure operating systems for communication in digital twins
11
作者 Zhenjiang Qian Gaofei Sun +1 位作者 Xiaoshuang Xing Gaurav Dhiman 《Digital Communications and Networks》 SCIE CSCD 2024年第2期304-314,共11页
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d... In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations. 展开更多
关键词 Theorem proving Isabelle/HOL Formal verification System modeling Correctness verification
下载PDF
Analysis of Modeling the Influence of Electromagnetic Fields Radiated by Industrial Static Converters and Impacts on Operators Using Maxwell’s Equations
12
作者 Anthony Bassesuka Sandoka Nzao Tuka Biaba Samuel Garcia +2 位作者 Obed Bitala Arsène Kasereka Kibwana Emmanuel Ndaye Kibuayi 《Open Journal of Applied Sciences》 2024年第8期2320-2350,共31页
The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of... The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings. 展开更多
关键词 modelING Electromagnetic Field Power Converters Geometric Parameters Biological Tissue Maxwell Equation Bio-Heat Equation Thermal model
下载PDF
Prognostic prediction models for postoperative patients with stageⅠtoⅢcolorectal cancer based on machine learning
13
作者 Xiao-Lin Ji Shuo Xu +5 位作者 Xiao-Yu Li Jin-Huan Xu Rong-Shuang Han Ying-Jie Guo Li-Ping Duan Zi-Bin Tian 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第12期4597-4613,共17页
BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to dev... BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients. 展开更多
关键词 Colorectal cancer Machine learning Prognostic prediction model Survival times Important variables
下载PDF
Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects
14
作者 Bo Yang Yucun Qian +2 位作者 Jianzhong Xu Yaxing Ren Yixuan Chen 《Energy Engineering》 EI 2024年第8期2085-2091,共7页
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to... 1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5]. 展开更多
关键词 Lithium batteries optimization operation modelLING state estimation life prediction fault diagnosis
下载PDF
Establishing and clinically validating a machine learning model for predicting unplanned reoperation risk in colorectal cancer
15
作者 Li-Qun Cai Da-Qing Yang +2 位作者 Rong-Jian Wang He Huang Yi-Xiong Shi 《World Journal of Gastroenterology》 SCIE CAS 2024年第23期2991-3004,共14页
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ... BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis. 展开更多
关键词 Colorectal cancer Postoperative unplanned reoperation Unplanned reoperation Clinical validation NOMOGRAM Machine learning models
下载PDF
Development and validation of a circulating tumor DNA-based optimization-prediction model for short-term postoperative recurrence of endometrial cancer
16
作者 Yuan Liu Xiao-Ning Lu +3 位作者 Hui-Ming Guo Chan Bao Juan Zhang Yu-Ni Jin 《World Journal of Clinical Cases》 SCIE 2024年第18期3385-3394,共10页
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r... BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC. 展开更多
关键词 Circulating tumor DNA Endometrial cancer Short-term recurrence Predictive model Prospective validation
下载PDF
Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control
17
作者 Jun Zhao Chaoying Yang +1 位作者 Ran Li Jinge Song 《Energy Engineering》 EI 2024年第3期747-767,共21页
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve... Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples. 展开更多
关键词 Demand response model predictive control multiple time scales operating simulation
下载PDF
Robust Platoon Control of Mixed Autonomous and Human-Driven Vehicles for Obstacle Collision Avoidance:A Cooperative Sensing-Based Adaptive Model Predictive Control Approach
18
作者 Daxin Tian Jianshan Zhou +1 位作者 Xu Han Ping Lang 《Engineering》 SCIE EI CAS CSCD 2024年第11期244-266,共23页
Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu... Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances. 展开更多
关键词 Connected autonomous vehicle Mixed vehicle platoon Obstacle collision avoidance Cooperative sensing Adaptive model predictive control
下载PDF
Predictive modeling for post operative delirium in elderly
19
作者 Chris B Lamprecht Abeer Dagra Brandon Lucke-Wold 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3761-3764,共4页
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom... Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability. 展开更多
关键词 Post-operative delirium Elderly delirium Neurocognitive syndrome NEUROTRANSMITTERS Abdominal malignancy Predictive model Synthetic minority oversampling technique
下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
20
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部