期刊文献+
共找到413,853篇文章
< 1 2 250 >
每页显示 20 50 100
Development of a Low-cost Hardware-in-the-loop Simulation System as a Test Bench for Anti-lock Braking System 被引量:5
1
作者 ZHANG Wei DING Nenggen +2 位作者 CHEN Moran YU Guizhen XU Xiangyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期98-104,共7页
Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to subs... Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided. 展开更多
关键词 hardware-in-the-loop simulation(HILS) anti-lock braking systems(ABS) electronic control units(ECU)
下载PDF
Control strategies and hardware-in-the-loop simulation for bus signal priority
2
作者 Ren Gang Lu Jian Zhou Zhuping 《Engineering Sciences》 EI 2010年第1期59-63,70,共6页
It is considered as an important and effective means to give priority to the development of public transit which can improve the efficiency of transportation resources utilization and alleviate traffic jams. Public tr... It is considered as an important and effective means to give priority to the development of public transit which can improve the efficiency of transportation resources utilization and alleviate traffic jams. Public transit signal priority belongs to the "time priority" among the right-of-way priorities. After reviewing the existing bus priority signal control strategies and the advances in related technologies at home and abroad, this article analyzed the breakthrough direction of the bus signal priority design technologies suitable for China's conditions, and then proposed the hardware and software systems and the modules for the bus priority signal control system. Finally, the hardware-in-the-loop simulation (HILS) was introduced to evaluate bus priority signal control programs in order to optimize the control strategies. 展开更多
关键词 bus priority signal control strategy hardware-in-the-loop simulation
下载PDF
Realization of nonlinear PID with feed-forward controller for 3-DOF flight simulator and hardware-in-the-loop simulation 被引量:3
3
作者 Duan Haibin Wang Daobo Yu Xiufen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期342-345,共4页
As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportional... As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator. 展开更多
关键词 flight simulator nonlinear PID FFC hardware-in-the-loop.
下载PDF
Hardware-in-the-Loop Simulation System for Space Manipulator Docking: Model,Stability and Experimental Evaluation 被引量:1
4
作者 Simiao Yu Shutao Zheng +2 位作者 Yu Yang Zhiyong Qu Junwei Han 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期89-102,共14页
A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,... A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally. 展开更多
关键词 MANIPULATOR DOCKING hardware-in-the-loop(HIL)simulation parameter configuration STABILITY condition dynamics frequency simulation CAPABILITY
下载PDF
Hardware-in-the-loop simulation of communication networks 被引量:3
5
作者 杨杰 李寅 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期376-381,共6页
To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits an... To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network. 展开更多
关键词 hardware-in-the-loop(HITL) simulation high level architecture(HLA) system-in-the-loop(SITL) asynchronous transfer mode(ATM) network
下载PDF
Research on the Hardware-in-the-loop Simulation of Guidance System
6
作者 Shan, Jiayuan Li, Zhongwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第3期41-48,共8页
In this paper, the composition of the hardware-in-the-loop simulation system of missile guidance system and the characteristic and function of every equipment in this simulation system are discussed. Then the principl... In this paper, the composition of the hardware-in-the-loop simulation system of missile guidance system and the characteristic and function of every equipment in this simulation system are discussed. Then the principle of this system is discussed in terms of theory, and the resemblance of prototype system with simulation system is analyzed. Also, many key problems such as equipment interface, equipment installation, modelling and software design are dealt with. At the end, the error source of simulation system is analyzed, and a strong base is built for the study of simulation system precision. 展开更多
关键词 ANIMATION Computer simulation Computer software Data acquisition Error analysis INSTALLATION Interfaces (computer) Missiles
下载PDF
Hardware-in-the-Loop Simulation of Vibration Control of Stay Cables with Damper Based on dSPACE System
7
作者 ZHOU Qunmei CHENG Pengju PENG Wei 《Journal of Donghua University(English Edition)》 CAS 2021年第3期257-263,共7页
A simple and economical method based on dSPACE system is developed to measure the effect of cable vibration control.The experiments,numerical simulation and hardware-in-the-loop(HIL)simulation are carried out for the ... A simple and economical method based on dSPACE system is developed to measure the effect of cable vibration control.The experiments,numerical simulation and hardware-in-the-loop(HIL)simulation are carried out for the vibration control of stay cables with dampers.Firstly,the test results of solid cable vibration under harmonic excitation are compared with the numerical simulation results of cable vibration to ensure the correctness of the simulation of cable module.Then,the vibration test results of solid cable with damper under harmonic excitation are compared with the numerical simulation results of solid cable with damper to ensure the correctness of the relevant modules.Finally,the external load and the cable are imported into the real-time simulation system to simulate the control effect of the damper under the current excitation in real time.The results show that the simulation is correct and the HIL simulation is feasible in the bridge engineering. 展开更多
关键词 stay cable vibration control dSPACE system hardware-in-the-loop(HIL)simulation
下载PDF
基于Plant Simulation仿真技术的装配生产线优化研究
8
作者 崔俊杰 马臻 郭海青 《南方农机》 2025年第2期145-149,共5页
【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增... 【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增幅接近10%,生产效率明显提升。【结论】通过将智能制造技能竞赛和科研教学活动相结合,能够凝练总结竞赛内容,促使教师紧盯前沿知识,创新改革教学内容,实现以赛促教、以赛促学、以赛促改、以赛促建的多重目标。 展开更多
关键词 Plant simulation仿真技术 生产优化 瓶颈工位
下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
9
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
下载PDF
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
10
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
11
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
下载PDF
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
12
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior Numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
SolarDesign:An online photovoltaic device simulation and design platform
13
作者 Wei E.I.Sha Xiaoyu Wang +8 位作者 Wenchao Chen Yuhao Fu Lijun Zhang Liang Tian Minshen Lin Shudi Jiao Ting Xu Tiange Sun Dongxue Liu 《Chinese Physics B》 2025年第1期135-141,共7页
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ... Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration. 展开更多
关键词 photovoltaic device simulation silicon solar cells organic and perovskite solar cells multi-physics and circuit simulation
下载PDF
Omnidirectional simulation analysis of thermomechanical coupling mechanism in inertia friction welding of Ni-based superalloy
14
作者 Chang-an LI Guoliang QIN Hao WANG 《Chinese Journal of Aeronautics》 2025年第1期202-216,共15页
The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to si... The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism of the friction interface.The numerical model successfully simulated the deceleration,deformation processes,and peak torsional moments in IFW and captured the evolution of temperature,contact pressure,and stress.The simulated results were validated through measured thermal history,optical macrography,and axial shortening.The results indicated that interfacial friction heat was the primary heat source,and plastic deformation energy only accounted for 4%of the total.The increase in initial rotational speed and friction pressure elevated the peak temperature,reaching a maximum of 1525.5K at an initial rotational speed of 2000 r/min and friction pressure of 400 MPa.The interface heat generation could form an axial temperature gradient exceeding 320K/mm.The radial inhomogeneities of heat generation and temperature were manifested in a concentric ring distribution with maximum heat flux and temperature ranging from 2/5 to 2/3 radius.The radial inhomogeneities were caused by increasing linear velocity along the radius and an opposite distribution of contact pressure,which could reach 1.7 times the set pressure at the center.The circumferential inhomogeneity of thermomechanical distribution during rotary friction welding was revealed for the first time,benefiting from the 3D model.The deflection and transformation of distribution in contact pressure and Mises stress were indicators of plastic deformation and transition of quasi-steady state welding.The critical Mises stress was 0.5 times the friction pressure in this study.The presented modeling provides a reliable insight into the thermo-mechanical coupling mechanism of IFW and lays a solid foundation for predicting the microstructures and mechanical properties of inertia friction welded joints. 展开更多
关键词 Inertia friction welding Thermo-mechanical coupling INHOMOGENEITY Numerical simulation Ni-based superalloy
原文传递
Molecular dynamics simulations of helium transport through inorganic mineral nanopores
15
作者 Dandan SONG Ping GUAN +1 位作者 Chi ZHANG Jiahao REN 《Science China Earth Sciences》 2025年第1期237-252,共16页
Helium transport through nanoscale inorganic mineral pores and pore throats is essential for its overall migration.To elucidate helium's transport dynamics within nanopores,we employed equilibrium and non-equilibr... Helium transport through nanoscale inorganic mineral pores and pore throats is essential for its overall migration.To elucidate helium's transport dynamics within nanopores,we employed equilibrium and non-equilibrium molecular dynamics simulations to investigate helium's static self-diffusion and pressure-driven flow in quartz slit-shaped nanopores.We also introduced water and various gases,including hydrogen,methane,ethane,nitrogen,and carbon dioxide,into the nanopores to assess their influence on helium transport.Our findings indicate minimal helium adsorption on quartz pore surfaces.Under conditions where the pore size is less than 5 nm and the pressure under 10 MPa,environmental factors markedly influence helium diffusion.Large pore sizes,high temperatures,and low gas pressures enhance helium desorption and facilitate faster diffusion.We observed a positive correlation between helium flow velocity and factors such as pore size,pressure gradient,and surface smoothness of the pores.Notably,the presence of pore water and carrier gases in quartz nanopores,which diffuse more slowly than helium,tends to reduce helium surface adsorption and slow its diffusion.Among the carrier gases studied,nitrogen showed similar adsorption capacity,diffusivity,and stability to helium,while carbon dioxide displayed the highest adsorption capacity and the slowest diffusion rate,markedly differing from helium.Based on the simulation results,we concluded that water and carrier gases primarily function as transport mediums in helium migration,moving together with helium.Nitrogen,which shares similar properties with helium,effectively assists in this co-migration process.Conversely,carbon dioxide,due to its high adsorption capacity and slow diffusion,tends to be lost during co-migration.As a result,gas reservoirs with high nitrogen levels and low carbon dioxide levels are more likely to have higher helium concentrations.Additionally,the smaller pore sizes and higher gas pressures in caprocks can impede helium's diffusion,favoring its preservation in reservoirs.Moreover,the presence of water and carrier gases significantly obstructs these pores,further hindering helium's escape. 展开更多
关键词 Helium transport Slit nanopores Molecular dynamics simulations DIFFUSION Flow carriers
原文传递
Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath
16
作者 Teng Xia Xiaohui Zhang +4 位作者 Ding Ma Zhi Yang Xinting Tong Yutang Zhao Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第1期121-140,共20页
Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphas... Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region. 展开更多
关键词 Copper smelting bottom-blown melting furnace flow characteristics temperature distribution numerical simulation
下载PDF
Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles
17
作者 Haris Alam Zuberi Madan Lal +2 位作者 Amol Singh Nurul Amira Zainal Ali J.Chamkha 《Computer Modeling in Engineering & Sciences》 2025年第2期1839-1864,共26页
Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical s... Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery,focusing on the effects of copper and alumina nanoparticles,is conducted.The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles,considering the influence of a magnetic field,thermal radiation,and various flow parameters.The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using the 4th order collocation method,bvp4c module in MATLAB.This approach obtains velocity and temperature profiles,revealing the impact of relevant parameters crucial in the biomedical field.The findings of this study underscore the significance of understanding blood flow dynamics in stenosed arteries and the potential benefits of utilizing copper and alumina nanoparticles in treatment strategies.The incorporation of nanoparticles introduces novel avenues for enhancing therapeutic interventions,particularly in mitigating the effects of stenosis.The elucidation of velocity and temperature profiles provides valuable insights into the behavior of blood flow under different conditions,thereby informing the development of targeted biomedical applications.The arterial curvature flow parameter influences temperature profiles,with increased parameters promoting more efficient heat dissipation.The elevated values of Prandtl number and thermal radiation parameter showcase the diminished temperature profiles,indicating stronger dominance of momentum diffusion over thermal diffusion and radiative heat transfer mechanism.Sensitivity analysis of the pertinent physical parameters reveals that the Prandtl number has the most significant impact on blood flow dynamics.A statistical analysis of the present results and existing literature has also been included in the study.Overall,this research contributes to advancing our understanding of vascular health and lays the groundwork for innovative approaches in stenosis treatment and related biomedical fields. 展开更多
关键词 Blood flow simulation STENOSIS copper and alumina nanoparticles thermal radiation curvature parameter
下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation
18
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts Flow simulation Turbulent flow
原文传递
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
19
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
下载PDF
Land use/cover change and ecological network in Gansu Province,China during 2000-2020 and their simulations in 2050
20
作者 MA Xinshu XIN Cunlin +6 位作者 CHEN Ning XIN Shunjie CHEN Hongxiang ZHANG Bo KANG Ligang WANG Yu JIAO Jirong 《Journal of Arid Land》 2025年第1期43-57,共15页
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t... Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making. 展开更多
关键词 patch-generating land use simulation(PLUS)model morphological spatial pattern analysis(MSPA) circuit theory ecological source ecological resistance surface ecological corridor ecological pinch point
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部