Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation,...To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.展开更多
Service-oriented air combat simulation architecture is proposed.The core design goal is high agility which represents the ability to accommodate the simulation requirements change.Its main idea is to design model unit...Service-oriented air combat simulation architecture is proposed.The core design goal is high agility which represents the ability to accommodate the simulation requirements change.Its main idea is to design model units as services that can communicate and interoperate with any other services at runtime.A service is autonomous and is fully defined by a description contract which contains some combination of syntactic,semantic,and behavioral information.Based on the architecture,air combat simulation system can be described as an abstract composition of description contracts.It becomes concrete at run time as services that implement the constituent description contracts are discovered and bind.The whole process is a continuous run-time activity that responds to simulation needs and the availability of services.This provides benefits of implementation transparency and minimal dependency between models.Thus,simulation system can minimize the impact of change on it and increase the overall efficiency to respond to requirements change.展开更多
Future Airspace Window Shooting is a newly developed technology, which needs effectiveness evaluation before widely used. Future airspace window shooting technology, simulation system development principles and softwa...Future Airspace Window Shooting is a newly developed technology, which needs effectiveness evaluation before widely used. Future airspace window shooting technology, simulation system development principles and software chosen to develop the simulation system are introduced in the first. And then the overall design of the system, realization of the system and effectiveness evaluation through simulation are discussed in detail. Through the simulation, it is known that the FAW shooting has more superior performance when facing maneuvering targets.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
现代战争的战场较大且兵种较多,利用多智能体强化学习(MARL)进行战场推演可以加强作战单位之间的协同决策能力,从而提升战斗力。当前MARL在兵棋推演研究和对抗演练中的应用普遍存在两个简化:各个智能体的同质化以及作战单位分布稠密。...现代战争的战场较大且兵种较多,利用多智能体强化学习(MARL)进行战场推演可以加强作战单位之间的协同决策能力,从而提升战斗力。当前MARL在兵棋推演研究和对抗演练中的应用普遍存在两个简化:各个智能体的同质化以及作战单位分布稠密。实际战争场景中并不总是满足这两个设定,可能包含多种异质的智能体以及作战单位分布稀疏。为了探索强化学习在更多场景中的应用,分别就这两方面进行改进研究。首先,设计并实现了多尺度多智能体抢滩登陆环境M2ALE,M2ALE针对上述两个简化设定做了针对性的复杂化,添加了多种异质智能体和作战单位分布稀疏的场景,这两种复杂化设定加剧了多智能体环境的探索困难问题和非平稳性,使用常用的多智能体算法通常难以训练。其次,提出了一种异质多智能体课程学习框架HMACL,用于应对M2ALE环境的难点。HMACL包括3个模块:1)任务生成模块(STG),用于生成源任务以引导智能体训练;2)种类策略提升模块(CPI),针对多智能体系统本身的非平稳性,提出了一种基于智能体种类的参数共享(Class Based Parameter Sharing)策略,实现了异质智能体系统中的参数共享;3)训练模块(Trainer),通过从STG获取源任务,从CPI获取最新的策略,使用任意MARL算法训练当前的最新策略。HMACL可以缓解常用MARL算法在M2ALE环境中的探索难问题和非平稳性问题,引导多智能体系统在M2ALE环境中的学习过程。实验结果表明,使用HMACL使得MARL算法在M2ALE环境下的采样效率和最终性能得到大幅度的提升。展开更多
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
文摘To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.
文摘Service-oriented air combat simulation architecture is proposed.The core design goal is high agility which represents the ability to accommodate the simulation requirements change.Its main idea is to design model units as services that can communicate and interoperate with any other services at runtime.A service is autonomous and is fully defined by a description contract which contains some combination of syntactic,semantic,and behavioral information.Based on the architecture,air combat simulation system can be described as an abstract composition of description contracts.It becomes concrete at run time as services that implement the constituent description contracts are discovered and bind.The whole process is a continuous run-time activity that responds to simulation needs and the availability of services.This provides benefits of implementation transparency and minimal dependency between models.Thus,simulation system can minimize the impact of change on it and increase the overall efficiency to respond to requirements change.
文摘Future Airspace Window Shooting is a newly developed technology, which needs effectiveness evaluation before widely used. Future airspace window shooting technology, simulation system development principles and software chosen to develop the simulation system are introduced in the first. And then the overall design of the system, realization of the system and effectiveness evaluation through simulation are discussed in detail. Through the simulation, it is known that the FAW shooting has more superior performance when facing maneuvering targets.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
文摘现代战争的战场较大且兵种较多,利用多智能体强化学习(MARL)进行战场推演可以加强作战单位之间的协同决策能力,从而提升战斗力。当前MARL在兵棋推演研究和对抗演练中的应用普遍存在两个简化:各个智能体的同质化以及作战单位分布稠密。实际战争场景中并不总是满足这两个设定,可能包含多种异质的智能体以及作战单位分布稀疏。为了探索强化学习在更多场景中的应用,分别就这两方面进行改进研究。首先,设计并实现了多尺度多智能体抢滩登陆环境M2ALE,M2ALE针对上述两个简化设定做了针对性的复杂化,添加了多种异质智能体和作战单位分布稀疏的场景,这两种复杂化设定加剧了多智能体环境的探索困难问题和非平稳性,使用常用的多智能体算法通常难以训练。其次,提出了一种异质多智能体课程学习框架HMACL,用于应对M2ALE环境的难点。HMACL包括3个模块:1)任务生成模块(STG),用于生成源任务以引导智能体训练;2)种类策略提升模块(CPI),针对多智能体系统本身的非平稳性,提出了一种基于智能体种类的参数共享(Class Based Parameter Sharing)策略,实现了异质智能体系统中的参数共享;3)训练模块(Trainer),通过从STG获取源任务,从CPI获取最新的策略,使用任意MARL算法训练当前的最新策略。HMACL可以缓解常用MARL算法在M2ALE环境中的探索难问题和非平稳性问题,引导多智能体系统在M2ALE环境中的学习过程。实验结果表明,使用HMACL使得MARL算法在M2ALE环境下的采样效率和最终性能得到大幅度的提升。