Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristi...Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristics is the Seebeck coefficient.In this work,ultra high molecular weight polyethylene(UHMWPE)and graphene oxide(GO)nanocomposites were prepared by mechanical mixing by containing 10000ppm,50000ppm,70000ppm,100000ppm,150000ppm,and 200000ppm loadings of graphene oxide.Due to the intrinsic insulating nature of UHMWPE,the value of Seebeck for pristine UHMWPE and its nanocomposites with 10000ppm&50000ppm of GO concentration was too low to be detected.However,the Seebeck coefficient for composites with 70000ppm,100000ppm,150000ppm,and 200000ppm loadings of GO was found to be 180,206,230,and 235μV/K,respectively.These higher values of Seebeck coefficients were attributed to the superior thermal insulating nature of UHMWPE and the conductive network induced by the GO within the UHMWPE insulating matrix.Although,the values of the figure of merit and power factor were negligibly small due to the lower concentration of charge carriers in UHMWPE/GO nanocomposites but still reported,results are extremely hopeful for considering the composite as the potential candidate for thermoelectric applications.展开更多
Electrical conductivity and seebeck coefficient at different temperatures,and thermal conductivity at room temperature for various doped polyaniline (PAn) samples were measured,and the thermoelectric figure of merit Z...Electrical conductivity and seebeck coefficient at different temperatures,and thermal conductivity at room temperature for various doped polyaniline (PAn) samples were measured,and the thermoelectric figure of merit ZT was calculated.The effects of preparation methods and temperature on thermoelectric properties were discussed.The results show that the electrical conductivity and the seebeck coefficient of PAn are strongly dependent on the preparation conditions and temperature.The electrical conductivity becomes larger and the seebeck coefficient becomes smaller as PAn molecular weight increases.Redoping by organic acid and HCl results in an increase in both electrical conductivity and Seebeck coefficient of PAn,and therefore ZT value.The electrical conductivity increases and the seebeck coefficient decreases as the temperature increases when T<T d (dedoping temperature).The decreasing of the electrical conductivity and increasing of the seebeck coefficient take place by dedoping when T>T d.The thermal conductivity is lower,and insensitive to the sample preparation conditions.展开更多
Micro crystalline materials of BiCoO3 and Ni0.5Bi0.5CoO3 have been prepared by solid state reaction technique. XRD studies of these polycrystalline materials confirmed the cubic structure with 197 I 23 space group. Th...Micro crystalline materials of BiCoO3 and Ni0.5Bi0.5CoO3 have been prepared by solid state reaction technique. XRD studies of these polycrystalline materials confirmed the cubic structure with 197 I 23 space group. The substitution of nickel in place of bismuth resulted in lattice contraction. The thermoelectric properties were investigated in the temperature ranging from 300°C to 700°C. The samples showed positive Seebeck coefficient. Nickel substitution with Bismuth is found to decrease the Seebeck coefficient and thermal conductivity but increase the electrical conductivity. The figure of merit (ZT) of the material was enhanced on nickel substitution. The ZT values increased with the increase of temperature which enables its utility in high temperature thermoelectric applications.展开更多
The investigation of the structure and thermoelectric properties of nanostructured solid solutions (Bi, Sb)2Te3 p-type has been carried out. The samples were obtained by grinding of original compositions in a planetar...The investigation of the structure and thermoelectric properties of nanostructured solid solutions (Bi, Sb)2Te3 p-type has been carried out. The samples were obtained by grinding of original compositions in a planetary ball mill and by spark plasma sintering (SPS). Initial powder has an average particle size of 10 - 12 nm according to transmission electron microscopy, and the size of the coherent scattering region (CSR) obtained by X-ray line broadening. During sintering at Ts = 250°C - 400°C, the grain size and CSR increased, which was associated with the processes of recrystallization. The maximum of size distribution of CSR shifts to larger sizes when Ts increases so that no broadening of X-ray lines at Ts = 400°C can take place. At higher Ts, the emergence of new nanograins is observed. The formation of nanograins is conditioned by reducing of quantity of the intrinsic point defects produced in the grinding of the source materials. The study of the electrical conductivity and the Hall effect in a single crystal allows to estimate the mean free path of the holes-L in the single crystal Bi0.5Sb1.5Te3 which at room temperature is 2 - 5 nm (it is much smaller than the dimensions of CSR in the samples). The method for evaluation of L in polycrystalline samples is proposed. At room temperature, L is close to the mean free path in single crystals. Scattering parameter holes in SPS samples obtained from the temperature dependence of the Seebeck coefficient are within the measurement error equal to the parameter of the scattering of holes in a single crystal. The figure of merit ZT of SPS samples as a function of composition and sintering temperature has been investigated. Maximum ZT, equal to 1.05 at room temperature, is obtained for the composition Bi0.4Sb1.6Te3 at Ts = 500°C and a pressure of 50 MPa. The causes of an apparent increase in thermoelectric efficiency are discussed.展开更多
采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)T...采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。展开更多
Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first p...Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first principles calculations which proved the metallic nature of these compounds. Post-DFT(BoltzTraP) calculations were carried out to explore their thermoelectric properties like electrical conductivities. Seebeck coefficient, electronic thermal conductivities and figure of merit. The highest Seebeck coefficient and figure of merit were found for YbAu among these compounds which are 105 μV/K and 0.285 respectively. All the calculations were carried out at 300 K. Large values of figure of merit obtained for these compounds at room temperature indicate that these materials can be used for thermoelectric devices however need experimental verification.展开更多
Based on direct-current transient Harman method,an integrated characterization system of thermoelectric device’s performance is established.The overall properties of thermoelectric modules with sandwiched structures ...Based on direct-current transient Harman method,an integrated characterization system of thermoelectric device’s performance is established.The overall properties of thermoelectric modules with sandwiched structures are experimentally investigated,including Seebeck coefficients,figures of merit(ZT),electrical and thermal conductivities.Experiment results reveal that ZT values of thermoelectric modules are smaller than those of commercial bismuth telluride(Bi2Te3)modules.In contrast,Seebeck coefficients are significantly larger than traditional thermoelectric device’s values.Meanwhile,both electrical and thermal conductivities are greater compared with literature data.Our results have proposed a feasible and economical way that can potentially increase Seebeck coefficients as to bulk Bi2Te3materials without significant deterioration to the nature of Peltier effect.展开更多
文摘Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristics is the Seebeck coefficient.In this work,ultra high molecular weight polyethylene(UHMWPE)and graphene oxide(GO)nanocomposites were prepared by mechanical mixing by containing 10000ppm,50000ppm,70000ppm,100000ppm,150000ppm,and 200000ppm loadings of graphene oxide.Due to the intrinsic insulating nature of UHMWPE,the value of Seebeck for pristine UHMWPE and its nanocomposites with 10000ppm&50000ppm of GO concentration was too low to be detected.However,the Seebeck coefficient for composites with 70000ppm,100000ppm,150000ppm,and 200000ppm loadings of GO was found to be 180,206,230,and 235μV/K,respectively.These higher values of Seebeck coefficients were attributed to the superior thermal insulating nature of UHMWPE and the conductive network induced by the GO within the UHMWPE insulating matrix.Although,the values of the figure of merit and power factor were negligibly small due to the lower concentration of charge carriers in UHMWPE/GO nanocomposites but still reported,results are extremely hopeful for considering the composite as the potential candidate for thermoelectric applications.
文摘Electrical conductivity and seebeck coefficient at different temperatures,and thermal conductivity at room temperature for various doped polyaniline (PAn) samples were measured,and the thermoelectric figure of merit ZT was calculated.The effects of preparation methods and temperature on thermoelectric properties were discussed.The results show that the electrical conductivity and the seebeck coefficient of PAn are strongly dependent on the preparation conditions and temperature.The electrical conductivity becomes larger and the seebeck coefficient becomes smaller as PAn molecular weight increases.Redoping by organic acid and HCl results in an increase in both electrical conductivity and Seebeck coefficient of PAn,and therefore ZT value.The electrical conductivity increases and the seebeck coefficient decreases as the temperature increases when T<T d (dedoping temperature).The decreasing of the electrical conductivity and increasing of the seebeck coefficient take place by dedoping when T>T d.The thermal conductivity is lower,and insensitive to the sample preparation conditions.
文摘Micro crystalline materials of BiCoO3 and Ni0.5Bi0.5CoO3 have been prepared by solid state reaction technique. XRD studies of these polycrystalline materials confirmed the cubic structure with 197 I 23 space group. The substitution of nickel in place of bismuth resulted in lattice contraction. The thermoelectric properties were investigated in the temperature ranging from 300°C to 700°C. The samples showed positive Seebeck coefficient. Nickel substitution with Bismuth is found to decrease the Seebeck coefficient and thermal conductivity but increase the electrical conductivity. The figure of merit (ZT) of the material was enhanced on nickel substitution. The ZT values increased with the increase of temperature which enables its utility in high temperature thermoelectric applications.
文摘The investigation of the structure and thermoelectric properties of nanostructured solid solutions (Bi, Sb)2Te3 p-type has been carried out. The samples were obtained by grinding of original compositions in a planetary ball mill and by spark plasma sintering (SPS). Initial powder has an average particle size of 10 - 12 nm according to transmission electron microscopy, and the size of the coherent scattering region (CSR) obtained by X-ray line broadening. During sintering at Ts = 250°C - 400°C, the grain size and CSR increased, which was associated with the processes of recrystallization. The maximum of size distribution of CSR shifts to larger sizes when Ts increases so that no broadening of X-ray lines at Ts = 400°C can take place. At higher Ts, the emergence of new nanograins is observed. The formation of nanograins is conditioned by reducing of quantity of the intrinsic point defects produced in the grinding of the source materials. The study of the electrical conductivity and the Hall effect in a single crystal allows to estimate the mean free path of the holes-L in the single crystal Bi0.5Sb1.5Te3 which at room temperature is 2 - 5 nm (it is much smaller than the dimensions of CSR in the samples). The method for evaluation of L in polycrystalline samples is proposed. At room temperature, L is close to the mean free path in single crystals. Scattering parameter holes in SPS samples obtained from the temperature dependence of the Seebeck coefficient are within the measurement error equal to the parameter of the scattering of holes in a single crystal. The figure of merit ZT of SPS samples as a function of composition and sintering temperature has been investigated. Maximum ZT, equal to 1.05 at room temperature, is obtained for the composition Bi0.4Sb1.6Te3 at Ts = 500°C and a pressure of 50 MPa. The causes of an apparent increase in thermoelectric efficiency are discussed.
文摘采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。
文摘Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first principles calculations which proved the metallic nature of these compounds. Post-DFT(BoltzTraP) calculations were carried out to explore their thermoelectric properties like electrical conductivities. Seebeck coefficient, electronic thermal conductivities and figure of merit. The highest Seebeck coefficient and figure of merit were found for YbAu among these compounds which are 105 μV/K and 0.285 respectively. All the calculations were carried out at 300 K. Large values of figure of merit obtained for these compounds at room temperature indicate that these materials can be used for thermoelectric devices however need experimental verification.
基金supported by the National Natural Science Foundation of China(51138005,51376097)the National Basic Research Program of China(2013CB228300)
文摘Based on direct-current transient Harman method,an integrated characterization system of thermoelectric device’s performance is established.The overall properties of thermoelectric modules with sandwiched structures are experimentally investigated,including Seebeck coefficients,figures of merit(ZT),electrical and thermal conductivities.Experiment results reveal that ZT values of thermoelectric modules are smaller than those of commercial bismuth telluride(Bi2Te3)modules.In contrast,Seebeck coefficients are significantly larger than traditional thermoelectric device’s values.Meanwhile,both electrical and thermal conductivities are greater compared with literature data.Our results have proposed a feasible and economical way that can potentially increase Seebeck coefficients as to bulk Bi2Te3materials without significant deterioration to the nature of Peltier effect.