A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in...A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.展开更多
In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite st...In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known.展开更多
In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculati...In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculations coupled with the incoherent charge-hopping model.Moreover,the hole carrier mobility of BFBPD thin-film was also estimated with the aid of an amorphous cell including 100 BFBPD molecules.Results revealed that the BFBPD-PC61 BM system possesses a middle-sized open-circuit voltage of 0.70 V,large short-circuit current density of 17.26 mA ·cm^-2,high fill factor of 0.846,and power conversion efficiency of 10%.With the Marcus model,in the BFBPD-PC61 BM interface,the exciton-dissociation rate,kdis,was predicted to be 2.684×10^13 s^-1,which is as 3-5 orders of magnitude large as the decay(radiative and non-radiative) one(10-8-10^10s^-1),indicating a high exciton-dissociation efficiency of 100% in the BFBPD-PC61 BM interface.Furthermore,by the molecular dynamics simulation,the hole mobility of BFBPD thin-film was predicted to be as high as 1.265 × 10^-2 cm-2·V^-1·s^-1,which can be attributed to its dense packing in solid state.展开更多
Four isomers of the three-dimensionally connected bare boron cationic cluster B were investigated by using ab initio molecular orbital theory at the HF/6-31G level. The results show that the D5h symmetric isomer of B ...Four isomers of the three-dimensionally connected bare boron cationic cluster B were investigated by using ab initio molecular orbital theory at the HF/6-31G level. The results show that the D5h symmetric isomer of B is a possible isomer candidate of its stable geometries with closed structure.展开更多
In order to understand the laws of motion for supercavitating vehicle better, simplified equations for longitudinal motion of supercavitating vehicle were derived. Then the corresponding simulation software for trajec...In order to understand the laws of motion for supercavitating vehicle better, simplified equations for longitudinal motion of supercavitating vehicle were derived. Then the corresponding simulation software for trajectory of supereavitating vehicle was programmed, by which the theoretical predicted trajectories of the supercavitating vehicle at different velocities were obtained. It was found that the predicted trajectories at low speed and without cavitation on the vehicle in theory agreed well with those in experiments, and the theoretical predicted trajectories at high speed and with supercavity on the vehicle correctly reflected the motion laws of the supercavitating vehicle. The influences of various parameters of eavitator and rudder on the underwater trajectory were compared and analyzed, which can provide a guide for the design of hydrodynamic distribution and gross parameters of the supereavitating weapons.展开更多
Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp...Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp-hybridized carbon atoms bridging by Ge atoms has been developed and investigated.The unique diamond-like structure constructed by linear butadiyne bonds and sp 3-hybridized Ge atoms ensures the stability of Ge-CDY.The large percentage of conjugated alkyne bonds composed of sp-C guarantees the good conductivity and the low band gap,which were further confirmed experimentally and theoretically,endowing Ge-CDY with the potential in electrochemical applications.The well-defined 3D carbon skeleton of Ge-CDY provides abundant uniform nanopores,which is suitable for metal ions storage and diffusion.Further half-cell evaluation also demonstrated Ge-CDY exhibited an excellent performance in lithium storage.All those indicating sp-hybridized carbon-based materials can exhibit great potential to possess excellent properties and be applied in the field of energy,electronic,and so on.展开更多
Designing and synthesizing high-performable electron donor materials are very important for fabricating organic solar cell devices with high power conversion efficiency (PCE). In this work, quantum chemical and mole...Designing and synthesizing high-performable electron donor materials are very important for fabricating organic solar cell devices with high power conversion efficiency (PCE). In this work, quantum chemical and molecular dynamics calculations coupled with the Marcus-Hush charge transfer model were used to investigate the photovoltaic properties of 4Cl-BPPQ/PC61BM. Results reveal that 4Cl-BPPQ/PCrlBM system theoretically possesses a large open-circuit voltage (1.29 V), high fill factor (0.90), and over 9% PCE. Moreover, calculations also reveal that the 4Cl-BPPQ/PC61BM system has a middle-sized exciton binding energy (0.492 eV), but relatively small charge-dissociation and charge-recombination reorganization energies (0.345 eV and 0.355 eV). Based on the 4CI-BPPQ/PC61BM complex, the charge-dissociation rate constant, kdis, is estimated to be as large as 6.575× 10^12 s^-1, while the charge-recombination one, krec, is very small (〈 1.0 s^-1) under the same condition due to the very small driving force (AGree=-1.900 eV). In addition, by means of an amorphous cell containing one hundred 4C1-BPPQ molecules, the hole carrier mobility of 4CI-BPPQ solid is estimated as high as 3.191 × 10^-3 cm^2·V^-1·s^-1. In brief, our calculation shows that 4Cl-BPPQ/PC61BM system is a very promising organic solar cell system, and is worth of making further device research by experiments.展开更多
The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of th...The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part.展开更多
The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations. In addition, we experimentally measured the flow rate, internal pressure,...The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations. In addition, we experimentally measured the flow rate, internal pressure, acoustic pressure, and transfer function using an acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. We investigated the influences of background air space, flow velocity, thickness, aperture rate, and aperture diameter of a perforated plate on the acoustic absorption characteristics. The frequency characteristics of the acoustic absorption coefficient showed a maximum value at a local frequency. As the background air space increased, the peak frequency of acoustic absorption characteristics decreased. As the flow velocity passing through the apertures increased, the peak level of the acoustic absorption coefficient also increased. The theoretical results agreed well with the experimental ones qualitatively.展开更多
The electroplating industry is the main source of 6:2 chlorinated polyfluorinated ether sulfonate(6:2 Cl-PFESA)pollution,which presents risks to human health and the environment.It is therefore crucial to develop effe...The electroplating industry is the main source of 6:2 chlorinated polyfluorinated ether sulfonate(6:2 Cl-PFESA)pollution,which presents risks to human health and the environment.It is therefore crucial to develop effective 6:2 Cl-PFESA degradation techniques.Persulfate oxidation is a potential treatment method for 6:2 Cl-PFESA due to its outstanding oxidative degradability following the generation of the sulfate radical(SO_(4)^(•−))and hydroxyl radical(•OH).It has proven difficult to acquire a full understanding of the reaction mechanism and formation of intermediate(IM)products through conventional experimental studies because they are costly and time-consuming.Therefore,a theoretical analysis method based on density functional theory(DFT)calculations was applied.The DFT results showed that electron transfer for the degradation of 6:2 Cl-PFESA could be initiated by the protonated sulfate radical(HSO_(4)•,ΔG≠SET=9.16 kcal/mol),rather than SO4•−(ΔG≠SET=41.60 kcal/mol).After desulfonation,the reaction underwent stepwise decarboxylation cycles under the action of•OH,leading to the elimination of the CF_(2) units until there was complete mineralization into HCl,HF,and CO_(2).Furthermore,the IMs and the end products of 6:2 Cl-PFESA were evaluated using ECOSAR and TEST software.The low bioaccumulation of the short-chain IMs meant that they could be considered safe in terms of ecotoxicity and health effects.This research determined the theoretical and mechanistic basis of the effects of persulfate in the treatment of water containing 6:2 Cl-PFESA,and its structural analogues.展开更多
CoS_(2) is considered to be a promising electrocatalyst for hydrogen evolution reaction(HER).However,its further widespread applications are hampered by the unsatisfactory activity due to relatively high chemisorption...CoS_(2) is considered to be a promising electrocatalyst for hydrogen evolution reaction(HER).However,its further widespread applications are hampered by the unsatisfactory activity due to relatively high chemisorption energy for hydrogen atom.Herein,theoretical predictions of first-principles calculations reveal that the introduction of a Cl-terminated MXenes-Ti_(3)CNCl_(2) can significantly reduce the HER potential of CoS_(2)-based materials and the Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure has Gibbs free energy of hydrogen adsorption(|ΔGH|)close to zero,much lower than that of the pristine CoS_(2) and Ti_(3)CNCl_(2).Inspired by the theoretical predictions,we have successfully fabricated a unique Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure by ingeniously coupling CoS_(2) with a Cl-terminated MXenes-Ti_(3)CNCl_(2).Interface-charge transfer between CoS_(2) and Ti_(3)CNCl_(2) results in a higher degree of electronic localization and a formation of chemical bonding.Thus,the Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure achieves a significant enhancement in HER activity compared to pristine CoS_(2) and Ti_(3)CNCl_(2).Theoretical calculations further confirm that the partial density of states of CoS_(2) after hybridization becomes more non-localized,and easier to interact with hydrogen ions,thus boosting HER performance.In this work,the success of oriented experimental fabrication of high-efficiency Ti_(3)CNCl_(2)@CoS_(2) electrocatalysts guided by theoretical predictions provides a powerful lead for the further strategic design and fabrication of efficient HER electrocatalysts.展开更多
Failure mechanism and impact resistance of a human porous cranium are studied in detail by means of theoretical and numerical methods.It is hypothesized that pore distribution of a cranium directly affects cranial ene...Failure mechanism and impact resistance of a human porous cranium are studied in detail by means of theoretical and numerical methods.It is hypothesized that pore distribution of a cranium directly affects cranial energy absorption,and a stretched beam model and a real beam model are taken as the example for the verification.Meanwhile,for the purpose of comparison with numerical results,a theoretical model is also proposed for the prediction of residual velocity and contact force of the impactor for an impacted skull.Compared with the real beam model,the stretched beam model containing through-thickness pores is easily deformed under the impact,thereby buffering well the external impact energy.The energy absorption efficiency of both the stretched beam model and real beam model is concerned with the threshold velocity for penetration which is directly related to the size of the structural damage area.Overall,there is good agreement between numerical and theoretical results.In addition,the effect of structural geometric parameters(shape and size of the impactor)on the impact resistance of the skull bone is theoretically investigated.The study provides reference for the evaluation of the energy absorption and failure mechanism of the skull under impact loads.展开更多
基金Project(51375328)supported by the National Natural Science Foundation of ChinaProject(20143009)supported by Graduates Innovation Project of Shanxi Province,ChinaProject(2015-036)supported by Shanxi Scholarship Council of China
文摘A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.
基金supported by the NSFC(no 40473024 and 40343019)Project of the 11th and 10th Five-Year Research and Development of International Seabed(noDYXM-115-02-1-11,PY105-01-04-13 and DY 105-01-02-1)+2 种基金Project of Key Laboratory of Marginal Sea Geology,Guangzhou Institute of Geochemistry and South China Sea Institute of Oceanology,CAS(no MSGL08-01,MSGLCAS03-4)Specialized Research Fund for the Doctoral Program of Higher Education(no 20040558049)the Fundamental Research Funds for the Central Universities
文摘In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known.
基金supported by the National Natural Science Foundation of China(No.21373132,No.21603133)the Education Department of Shaanxi Provincial Government Research Projects(No.16JK1142,No.16JK1134)the Scientific Research Foundation of Shaanxi University of Technology for Recruited Talents(No.SLGKYQD2-13,No.SLGKYQD2-10,No.SLGQD14-10)
文摘In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculations coupled with the incoherent charge-hopping model.Moreover,the hole carrier mobility of BFBPD thin-film was also estimated with the aid of an amorphous cell including 100 BFBPD molecules.Results revealed that the BFBPD-PC61 BM system possesses a middle-sized open-circuit voltage of 0.70 V,large short-circuit current density of 17.26 mA ·cm^-2,high fill factor of 0.846,and power conversion efficiency of 10%.With the Marcus model,in the BFBPD-PC61 BM interface,the exciton-dissociation rate,kdis,was predicted to be 2.684×10^13 s^-1,which is as 3-5 orders of magnitude large as the decay(radiative and non-radiative) one(10-8-10^10s^-1),indicating a high exciton-dissociation efficiency of 100% in the BFBPD-PC61 BM interface.Furthermore,by the molecular dynamics simulation,the hole mobility of BFBPD thin-film was predicted to be as high as 1.265 × 10^-2 cm-2·V^-1·s^-1,which can be attributed to its dense packing in solid state.
文摘Four isomers of the three-dimensionally connected bare boron cationic cluster B were investigated by using ab initio molecular orbital theory at the HF/6-31G level. The results show that the D5h symmetric isomer of B is a possible isomer candidate of its stable geometries with closed structure.
文摘In order to understand the laws of motion for supercavitating vehicle better, simplified equations for longitudinal motion of supercavitating vehicle were derived. Then the corresponding simulation software for trajectory of supereavitating vehicle was programmed, by which the theoretical predicted trajectories of the supercavitating vehicle at different velocities were obtained. It was found that the predicted trajectories at low speed and without cavitation on the vehicle in theory agreed well with those in experiments, and the theoretical predicted trajectories at high speed and with supercavity on the vehicle correctly reflected the motion laws of the supercavitating vehicle. The influences of various parameters of eavitator and rudder on the underwater trajectory were compared and analyzed, which can provide a guide for the design of hydrodynamic distribution and gross parameters of the supereavitating weapons.
基金This study was supported by the National Natural Science Foundation of China (21701182,51822208,21771187,21790050,and 21790051)the Frontier Science Research Project (QYZDB-SSW-JSC052)+1 种基金the Chinese Academy of Sciences,the Taishan Scholars Program of Shandong Province (tsqn201812111)Institute Research Project (QIBEBT ZZBS 201809).
文摘Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp-hybridized carbon atoms bridging by Ge atoms has been developed and investigated.The unique diamond-like structure constructed by linear butadiyne bonds and sp 3-hybridized Ge atoms ensures the stability of Ge-CDY.The large percentage of conjugated alkyne bonds composed of sp-C guarantees the good conductivity and the low band gap,which were further confirmed experimentally and theoretically,endowing Ge-CDY with the potential in electrochemical applications.The well-defined 3D carbon skeleton of Ge-CDY provides abundant uniform nanopores,which is suitable for metal ions storage and diffusion.Further half-cell evaluation also demonstrated Ge-CDY exhibited an excellent performance in lithium storage.All those indicating sp-hybridized carbon-based materials can exhibit great potential to possess excellent properties and be applied in the field of energy,electronic,and so on.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21373132, 21502109), and the Doctor Research Start Foundation of Shaanxi University of Technology (Nos. SLGKYQD2-13, SLGKYQD2-10, SLGQD14-10), and the Education Department of Shaanxi Provincial Gov- ernment Research Projects (No. 16JK1142).
文摘Designing and synthesizing high-performable electron donor materials are very important for fabricating organic solar cell devices with high power conversion efficiency (PCE). In this work, quantum chemical and molecular dynamics calculations coupled with the Marcus-Hush charge transfer model were used to investigate the photovoltaic properties of 4Cl-BPPQ/PC61BM. Results reveal that 4Cl-BPPQ/PCrlBM system theoretically possesses a large open-circuit voltage (1.29 V), high fill factor (0.90), and over 9% PCE. Moreover, calculations also reveal that the 4Cl-BPPQ/PC61BM system has a middle-sized exciton binding energy (0.492 eV), but relatively small charge-dissociation and charge-recombination reorganization energies (0.345 eV and 0.355 eV). Based on the 4CI-BPPQ/PC61BM complex, the charge-dissociation rate constant, kdis, is estimated to be as large as 6.575× 10^12 s^-1, while the charge-recombination one, krec, is very small (〈 1.0 s^-1) under the same condition due to the very small driving force (AGree=-1.900 eV). In addition, by means of an amorphous cell containing one hundred 4C1-BPPQ molecules, the hole carrier mobility of 4CI-BPPQ solid is estimated as high as 3.191 × 10^-3 cm^2·V^-1·s^-1. In brief, our calculation shows that 4Cl-BPPQ/PC61BM system is a very promising organic solar cell system, and is worth of making further device research by experiments.
基金co-supported by National Natural Science Foundation of China (No.50905008)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (No.SAMC12-JS-15-008)
文摘The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part.
基金supported by JSPS KAKENHI Grant Numbers JP17K06232
文摘The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations. In addition, we experimentally measured the flow rate, internal pressure, acoustic pressure, and transfer function using an acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. We investigated the influences of background air space, flow velocity, thickness, aperture rate, and aperture diameter of a perforated plate on the acoustic absorption characteristics. The frequency characteristics of the acoustic absorption coefficient showed a maximum value at a local frequency. As the background air space increased, the peak frequency of acoustic absorption characteristics decreased. As the flow velocity passing through the apertures increased, the peak level of the acoustic absorption coefficient also increased. The theoretical results agreed well with the experimental ones qualitatively.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U20A20146,Grant No.52200198)the Natural Science Foundation of Shandong Province(Grant No.ZR2021QB186).
文摘The electroplating industry is the main source of 6:2 chlorinated polyfluorinated ether sulfonate(6:2 Cl-PFESA)pollution,which presents risks to human health and the environment.It is therefore crucial to develop effective 6:2 Cl-PFESA degradation techniques.Persulfate oxidation is a potential treatment method for 6:2 Cl-PFESA due to its outstanding oxidative degradability following the generation of the sulfate radical(SO_(4)^(•−))and hydroxyl radical(•OH).It has proven difficult to acquire a full understanding of the reaction mechanism and formation of intermediate(IM)products through conventional experimental studies because they are costly and time-consuming.Therefore,a theoretical analysis method based on density functional theory(DFT)calculations was applied.The DFT results showed that electron transfer for the degradation of 6:2 Cl-PFESA could be initiated by the protonated sulfate radical(HSO_(4)•,ΔG≠SET=9.16 kcal/mol),rather than SO4•−(ΔG≠SET=41.60 kcal/mol).After desulfonation,the reaction underwent stepwise decarboxylation cycles under the action of•OH,leading to the elimination of the CF_(2) units until there was complete mineralization into HCl,HF,and CO_(2).Furthermore,the IMs and the end products of 6:2 Cl-PFESA were evaluated using ECOSAR and TEST software.The low bioaccumulation of the short-chain IMs meant that they could be considered safe in terms of ecotoxicity and health effects.This research determined the theoretical and mechanistic basis of the effects of persulfate in the treatment of water containing 6:2 Cl-PFESA,and its structural analogues.
基金supported by the National Natural Science Foundation of China(No.62004143)the Central Government Guided Local Science and Technology Development Special Fund Project(No.2020ZYYD033)+3 种基金the Natural Science Foundation of Hubei Province(No.2021CFB133)the Opening Fund of Key Laboratory of Rare Mineral,Ministry of Natural Resources(No.KLRM-KF 202005)the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology(No.GCP202101)the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LCX2021003).
文摘CoS_(2) is considered to be a promising electrocatalyst for hydrogen evolution reaction(HER).However,its further widespread applications are hampered by the unsatisfactory activity due to relatively high chemisorption energy for hydrogen atom.Herein,theoretical predictions of first-principles calculations reveal that the introduction of a Cl-terminated MXenes-Ti_(3)CNCl_(2) can significantly reduce the HER potential of CoS_(2)-based materials and the Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure has Gibbs free energy of hydrogen adsorption(|ΔGH|)close to zero,much lower than that of the pristine CoS_(2) and Ti_(3)CNCl_(2).Inspired by the theoretical predictions,we have successfully fabricated a unique Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure by ingeniously coupling CoS_(2) with a Cl-terminated MXenes-Ti_(3)CNCl_(2).Interface-charge transfer between CoS_(2) and Ti_(3)CNCl_(2) results in a higher degree of electronic localization and a formation of chemical bonding.Thus,the Ti_(3)CNCl_(2)@CoS_(2) core–shell nanostructure achieves a significant enhancement in HER activity compared to pristine CoS_(2) and Ti_(3)CNCl_(2).Theoretical calculations further confirm that the partial density of states of CoS_(2) after hybridization becomes more non-localized,and easier to interact with hydrogen ions,thus boosting HER performance.In this work,the success of oriented experimental fabrication of high-efficiency Ti_(3)CNCl_(2)@CoS_(2) electrocatalysts guided by theoretical predictions provides a powerful lead for the further strategic design and fabrication of efficient HER electrocatalysts.
基金This study was funded in part by the National Natural Science Foundation of China(Grant 12002107)the National Postdoctoral Program for Innovative Talents(Grant BX20190101)+3 种基金the China Postdoctoral Science Foundation(Grant 2019M661268)the Heilongjiang Postdoctoral Financial Assistance(Grant LBH-Z19061)The present work was also supported in part by Alexander von Humboldt Foundation(Grant 1155520)(University of Siegen,Germany)the Science and Technology on Advanced Composites in Special Environment Laboratory,Young Elite Scientist Sponsorship Program by CAST(Grant YESS20160190).
文摘Failure mechanism and impact resistance of a human porous cranium are studied in detail by means of theoretical and numerical methods.It is hypothesized that pore distribution of a cranium directly affects cranial energy absorption,and a stretched beam model and a real beam model are taken as the example for the verification.Meanwhile,for the purpose of comparison with numerical results,a theoretical model is also proposed for the prediction of residual velocity and contact force of the impactor for an impacted skull.Compared with the real beam model,the stretched beam model containing through-thickness pores is easily deformed under the impact,thereby buffering well the external impact energy.The energy absorption efficiency of both the stretched beam model and real beam model is concerned with the threshold velocity for penetration which is directly related to the size of the structural damage area.Overall,there is good agreement between numerical and theoretical results.In addition,the effect of structural geometric parameters(shape and size of the impactor)on the impact resistance of the skull bone is theoretically investigated.The study provides reference for the evaluation of the energy absorption and failure mechanism of the skull under impact loads.