A coordination polymer [Mn2(ctpt)2(aic)2]n (1, ctpt = 2-(4-chloro-phenyl)-1H- 1,3,7,8-tetraaza-cyclopenta[l]phenanthrene, H2aic = 5-amino-isophthalic acid) was hydrother- mally designed and synthesized. The co...A coordination polymer [Mn2(ctpt)2(aic)2]n (1, ctpt = 2-(4-chloro-phenyl)-1H- 1,3,7,8-tetraaza-cyclopenta[l]phenanthrene, H2aic = 5-amino-isophthalic acid) was hydrother- mally designed and synthesized. The complex was characterized by elemental analysis, IR spectro- scopy, single-crystal X-ray diffraction, and thermogravimetric analysis (TGA). Each Mn(II) atom is linked by the aic ligands with neighbor Mn(II) atoms, forming an infinite one-dimensional (1D) double-chain structure. Complex 1 crystallizes in monoclinic, space group C2/c, with a = 18.23(1), b = 17.27(1), c = 16.69(1) ?, V = 4814.0(7) ?3, C27H16ClMnN5O4, Mr = 564.84, Dc = 1.559 g/cm3, μ(MoKα) = 0.706 mm-1, F(000) = 2296, Z = 8, the final R = 0.0487 and wR = 0.1269 (I 〉 2σ(I)). The 1D chain structure of complex 1 is stable below 458 ℃. In addition, to elucidate the essential electronic characters of this complex, theoretical calculation analysis of 1 was performed by the PBE0/LANL2DZ method in Gaussian 03 Program.展开更多
A theoretical method to calculate the mode of polyurethane(PU) prepolymers grafted to polyacrylic(PAC) was presented. Using hydroxyethyl acrylate(HEA) as coupling agent, polyurethane-acrylics(PU-AC) hybrid lat...A theoretical method to calculate the mode of polyurethane(PU) prepolymers grafted to polyacrylic(PAC) was presented. Using hydroxyethyl acrylate(HEA) as coupling agent, polyurethane-acrylics(PU-AC) hybrid latexes were prepared with varying HEA level and the reaction of HEA with PU prepolymers at different temperatures, and PU grafted to PAC was experimentally determined. The results show that PU grafted to PAC regularly increased, and the non-grafted and linear free PU regularly decreased with increase in HEA/NCO(isocyanate group). The grafted PU on PAC was not proportional to HEA. More than half of linear PU prepolymers were grafted to PAC when HEA was at a low level with HEA/NCO at 0.33. While grafted PU increased to 84.80%(mass fraction), when HEA/NCO increased to 1.0. The results were interpreted based on the theoretical calculation of PU grafted to PAC by the present method.展开更多
Solvothermal reactions of Ca(NO), Sr(NO)with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)]n(M = Ca(1), Sr(2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimeth...Solvothermal reactions of Ca(NO), Sr(NO)with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)]n(M = Ca(1), Sr(2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimethylformamide), which have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectra. Both compounds feature three-dimensional(3D) frameworks based on the versatile coordinated modes(μ-η~2:η~2, μ-η~2:η~1, μ-η~2:η~1) of carboxylic groups in tdc ligands. C–H···S hydrogen bonds and C–H···π interactions contribute to the stabilization of the structures. They exhibit weaker packing force compared with their literature isomers. Consequently, blue and blue/green luminescence of two compounds has been observed. Their luminescence mechanism can be ascribed to ligand-to-metal charge transfer(LMCT) compared with the ligand-centered luminescence in their isomers. Electronic structural calculations illustrate that under the condition of weaker packing forces, larger gaps can be achieved, which facilitate the LMCT. This work suggests that the introduction of S-heteroatom can result in more electrons rich in the metal centers, thus giving rise to metal-involved luminescence.展开更多
Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. O...Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. Optimized structures and structural reactivates have been studied through bond stability and angles using DFT calculation based on the basis set 6-31G*. Energetic properties have been calculated like total energy, Gibbs free energy, entropy, heat of formation, and rate constant for all chemical species that's participate in the suggested reaction mechanism. Reaction mechanism and rate determining step had been suggested according to calculation of energy barrier values, and compares between the suggested competitive reactions for each probable reaction step. Suggested structures and the probable transition states have been studied.展开更多
Polymer‐stabilized Au nano clusters (NCs) with mean diameters of 2–10 nm exhibit unique catalytic properties. Several studies have shown that the key factors affecting the catalytic activity of poly‐mer‐stabiliz...Polymer‐stabilized Au nano clusters (NCs) with mean diameters of 2–10 nm exhibit unique catalytic properties. Several studies have shown that the key factors affecting the catalytic activity of poly‐mer‐stabilized Au NCs are control of the Au NC size, appropriate selection of polymers and optimi‐zation of the reaction conditions. This is because polymer‐stabilized Au NCs exhibit a clear size effect in several catalytic reactions, and the catalytic activity differs with the type of polymer used and the reaction conditions. In order to elucidate the reason underlying the catalytic activity of the polymer‐stabilized Au NCs, much attention is being devoted to the interplay of theoretical calcula‐tions and experiments in catalysis by polymer stabilized Au NCs. The present article mainly summa‐rizes our progress in understanding this interplay in polymer‐stabilized Au NC catalysis.展开更多
Tautomeric forms of Thiosemicarbazones have been investigated by spectrometric methods, their chemical reactivity and theoretical calculations of the relative tautomers stabilities. The mass spectral fragmentation of ...Tautomeric forms of Thiosemicarbazones have been investigated by spectrometric methods, their chemical reactivity and theoretical calculations of the relative tautomers stabilities. The mass spectral fragmentation of thiosemicarbazones synthesized from acetophenones has been studied by CG/MS. The analysis of the corresponding spectra shows not only the regular fragmentation mechanisms but homolytic ruptures from even-electron species. 1H NMR spectra exhibit signals for the most intense open thioketo tautomeric structure, although when using TFA a ring structure is observed in the corresponding tautomeric equilibrium. Density Functional Theory calculations (DFT) also provide evidence to support the experimental observations by GC-MS and 1H NMR. Methylation reactions give support to the occurrence of the thioenol tautomeric form which would be the second most abundant according to the Density Functional Theoretical calculations.展开更多
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r...As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.展开更多
We measured the photoelectron spectra of Al_(n)C_(4)^(−)(n=2−4)clusters by using size-selected anion photoelectron spectroscopy.The structures of Al_(n)C_(4)^(−/0)(n=2−4)clusters were explored with quantum chemistry c...We measured the photoelectron spectra of Al_(n)C_(4)^(−)(n=2−4)clusters by using size-selected anion photoelectron spectroscopy.The structures of Al_(n)C_(4)^(−/0)(n=2−4)clusters were explored with quantum chemistry calculations and were determined by comparing the theoretical results with the experimental spectra.It is found that the most stable structure of Al_(2)C_(4)^(−) anion is a C_(2v)symmetry planar structure with two Al atoms interacting with two C_(2)units.In addition,Al_(2)C_(4)^(−) anion also has a D∞h symmetry linear structure with two Al atoms located at the two ends of a C_(4)chain,which is slightly higher in energy than the planar structure.The most stable structure of neutral Al_(2)C_(4)has a D∞h symmetry linear structure.The most stable structure of Al_(3)C_(4)^(−) anion is a planar structure with three Al atoms interacting with two C_(2)units.Whereas neutral Al_(3)C_(4)cluster has a C_(2v)symmetric V-shaped bent structure.The global minima structures of both Al_(4)C_(4)^(−) and neutral Al_(4)C_(4)are C_(2)h symmetry planar structures with four Al atoms interacting with the ends of two C_(2)units.Adaptive natural density partitioning analyses of Al_(n)C_(4)^(−)(n=2−4)clusters show that the interactions between the Al atoms and C_(2)units have bothσandπcharacters.展开更多
Investigating the structures and properties of Au-Ge mixed clusters can give insight into the microscopic mechanisms in gold-catalyzed Ge films and can also provide valuable information for the production of germanium...Investigating the structures and properties of Au-Ge mixed clusters can give insight into the microscopic mechanisms in gold-catalyzed Ge films and can also provide valuable information for the production of germanium-based functional materials. In this work, size-selected anion photoelectron spectroscopy and theoretical calculations were used to explore the structural evolution and electronic properties of Au2Gen^-/0 (n=1-8) clusters. It is found that the two Au atoms in Au2Gen^-/0 (n=1-8) showed high coordination numbers and weak aurophilic interactions. The global minima of Au2Gen- anions and Au2Gen neutrals are in spin doublet and singlet states, respectively. Au2Gen- anions and Au2Gen neutrals showed similar structural features, except for Au2Ge4^-/0 and Au2Ge5^-/0. The C2v symmetric V-shaped structure is observed for Au2Ge1^-/0, while Au2Ge2^-/0 has a C2v symmetric dibridged structure. Au2Ge3^-/0 can be viewed as the two Au atoms attached to different Ge-Ge bonds of Ge3 triangle. Au2Ge4- has two Au atoms edge-capping Ge4 tetrahedron, while Au2Ge4 neutral adopts a C2v symmetric double Au atoms face-capping Ge4 rhombus. Au2Ge5-8^-/0 show triangular, tetragonal, and pentagonal prism-based geometries. Au2Ge6 adopts a C2v symmetric tetragonal prism structure and exhibits σ plus π double bonding characters.展开更多
The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improv...The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.展开更多
The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for ...The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out,while the concise but accurate theoretical or mechanism model is still not well developed.In this article,a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water.The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame.The model has achieved good trajectory prediction effect in the bubble rising experiment.The average simulation time per unit moving time of bubble is 2.5 s.展开更多
Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aime...Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aimed to assess the theoretical knowledge of doctors and interns in medical imaging in the northern region of Burkina Faso. Methodology: This was a descriptive cross-sectional survey based on a self-administered questionnaire. Prescribers knowledge was estimated based on scores derived from questionnaire responses. Results: We collected 106 questionnaires out of 163, i.e. a participation rate of 65.03%. The average knowledge score was 81.71% for the contribution of medical imaging to patient management. It was 60.02% for the indications/counter-indications of radiological examinations and 72.56% for the risks associated with exposure to radiation during these examinations. The score was 59.83% for the methods used to select the appropriate radiological examination. As regards the completeness of the clinical and biological information on the forms requesting imaging examinations, the score was 96.65%. Specialist doctors had the highest overall level of knowledge (74.68%). Conclusion: Improved technical facilities, good initial and in-service training, and interdisciplinary collaboration will help to ensure that imaging tests are properly prescribed, leading to better patient care.展开更多
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep...Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.展开更多
This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-pri...This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods.展开更多
Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization ...Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.展开更多
Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field.A novel theoretical method through an inverse composition design route,i.e.initially ens...Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field.A novel theoretical method through an inverse composition design route,i.e.initially ensuring the oxide scale with excellent anti-ablation stability,is proposed to improve the ablation resistance of the highentropy carbide coatings.In this work,the(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))C1-δ(HEC)coatings were prepared by the inverse design concept and verified by the ablation resistance experiment.The linear ablation rate of the HEC coatings is1.45μm/s,only 4.78%of the pristine HfC coatings after the oxyacetylene ablation at 4.18 MW/m2.The HEC possesses higher toughness with a higher Pugh's ratio of 1.55 in comparison with HfC(1.30).The in-situ formed dense(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))O2-δoxide scale during ablation benefits to improve the anti-ablation performance attributed to its high structural adaptability with a lattice constant change not exceeding 0.19%at 2000-2300℃.The current investigation demonstrates the effectiveness of the inverse theoretical design,providing a novel optimization approach for ablation protection of high-entropy carbide coatings.展开更多
Background: Pericardial effusion may progress to cardiac tamponade when pressure around the heart increases to a level comparable to that of the right and left atria. Patients with cardiac tamponade need timely comple...Background: Pericardial effusion may progress to cardiac tamponade when pressure around the heart increases to a level comparable to that of the right and left atria. Patients with cardiac tamponade need timely completion of emergency pericardiocentesis to relieve the threat to the patient’s life, and to save valuable time for patients who need emergency thoracotomy and pericardial window drainage. Pericardiocentesis is a necessary clinical skill for residents in standardized training. In addition, nurses who are familiar with this technology can better assist clinicians to perform this operation. In order to make the medical staff quickly master the theoretical knowledge of emergency pericardiocentesis, we designed a “1 + 1 + 1” teaching method for the theoretical teaching of emergency pericardiocentesis. Objective: This study aims to explore the effectiveness of the “1 + 1 + 1” teaching method in the theoretical teaching of emergency pericardiocentesis. Methods: We used an English teaching video of emergency pericardiocentesis and applied the “1 + 1 + 1” teaching method for theoretical teaching. A questionnaire survey was conducted before and after the lecture among 19 medical staff of different years of service to understand their mastery of the theoretical content of emergency pericardiocentesis before and after the lecture. According to the years of service, the medical staff were divided into three groups: 1 - 3 years (Group A), 4 - 10 years (Group B), and over 10 years (Group C), and the changes in the mastery of various contents by the overall medical staff and each group were statistically analyzed. Results: Before the lecture, the number of people who mastered the indications, contraindications, most commonly used methods, and common complications of emergency pericardiocentesis were 15, 12, 16, and 17, respectively, whereas after the lecture, these numbers increased to 17, 19, 19, and 19, respectively. The overall mastery before and after the lecture was statistically significant (p Conclusion: The “1 + 1 + 1” teaching method can effectively improve the overall mastery level of medical staff’s theoretical knowledge of emergency pericardiocentesis, especially in improving the mastery of contraindications of this operation.展开更多
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy...In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.展开更多
基金supported by the National Natural Science Foundation of China(No.21406085)
文摘A coordination polymer [Mn2(ctpt)2(aic)2]n (1, ctpt = 2-(4-chloro-phenyl)-1H- 1,3,7,8-tetraaza-cyclopenta[l]phenanthrene, H2aic = 5-amino-isophthalic acid) was hydrother- mally designed and synthesized. The complex was characterized by elemental analysis, IR spectro- scopy, single-crystal X-ray diffraction, and thermogravimetric analysis (TGA). Each Mn(II) atom is linked by the aic ligands with neighbor Mn(II) atoms, forming an infinite one-dimensional (1D) double-chain structure. Complex 1 crystallizes in monoclinic, space group C2/c, with a = 18.23(1), b = 17.27(1), c = 16.69(1) ?, V = 4814.0(7) ?3, C27H16ClMnN5O4, Mr = 564.84, Dc = 1.559 g/cm3, μ(MoKα) = 0.706 mm-1, F(000) = 2296, Z = 8, the final R = 0.0487 and wR = 0.1269 (I 〉 2σ(I)). The 1D chain structure of complex 1 is stable below 458 ℃. In addition, to elucidate the essential electronic characters of this complex, theoretical calculation analysis of 1 was performed by the PBE0/LANL2DZ method in Gaussian 03 Program.
基金Supported by the National Natural Science Foundation of China(No20874040)the Research Fund from University of Jinan, China(NoXKY0721)
文摘A theoretical method to calculate the mode of polyurethane(PU) prepolymers grafted to polyacrylic(PAC) was presented. Using hydroxyethyl acrylate(HEA) as coupling agent, polyurethane-acrylics(PU-AC) hybrid latexes were prepared with varying HEA level and the reaction of HEA with PU prepolymers at different temperatures, and PU grafted to PAC was experimentally determined. The results show that PU grafted to PAC regularly increased, and the non-grafted and linear free PU regularly decreased with increase in HEA/NCO(isocyanate group). The grafted PU on PAC was not proportional to HEA. More than half of linear PU prepolymers were grafted to PAC when HEA was at a low level with HEA/NCO at 0.33. While grafted PU increased to 84.80%(mass fraction), when HEA/NCO increased to 1.0. The results were interpreted based on the theoretical calculation of PU grafted to PAC by the present method.
基金supported by the Science and Technology Funding Project of Fujian Provincial Department of Transportation(No.201337)
文摘Solvothermal reactions of Ca(NO), Sr(NO)with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)]n(M = Ca(1), Sr(2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimethylformamide), which have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectra. Both compounds feature three-dimensional(3D) frameworks based on the versatile coordinated modes(μ-η~2:η~2, μ-η~2:η~1, μ-η~2:η~1) of carboxylic groups in tdc ligands. C–H···S hydrogen bonds and C–H···π interactions contribute to the stabilization of the structures. They exhibit weaker packing force compared with their literature isomers. Consequently, blue and blue/green luminescence of two compounds has been observed. Their luminescence mechanism can be ascribed to ligand-to-metal charge transfer(LMCT) compared with the ligand-centered luminescence in their isomers. Electronic structural calculations illustrate that under the condition of weaker packing forces, larger gaps can be achieved, which facilitate the LMCT. This work suggests that the introduction of S-heteroatom can result in more electrons rich in the metal centers, thus giving rise to metal-involved luminescence.
文摘Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. Optimized structures and structural reactivates have been studied through bond stability and angles using DFT calculation based on the basis set 6-31G*. Energetic properties have been calculated like total energy, Gibbs free energy, entropy, heat of formation, and rate constant for all chemical species that's participate in the suggested reaction mechanism. Reaction mechanism and rate determining step had been suggested according to calculation of energy barrier values, and compares between the suggested competitive reactions for each probable reaction step. Suggested structures and the probable transition states have been studied.
基金supported by Japan Science and Technology Agency (JST)Advanced Low Carbon Technology Research and Development Program (ALCA)Core Research for Evolutional Science and Technology (CREST)
文摘Polymer‐stabilized Au nano clusters (NCs) with mean diameters of 2–10 nm exhibit unique catalytic properties. Several studies have shown that the key factors affecting the catalytic activity of poly‐mer‐stabilized Au NCs are control of the Au NC size, appropriate selection of polymers and optimi‐zation of the reaction conditions. This is because polymer‐stabilized Au NCs exhibit a clear size effect in several catalytic reactions, and the catalytic activity differs with the type of polymer used and the reaction conditions. In order to elucidate the reason underlying the catalytic activity of the polymer‐stabilized Au NCs, much attention is being devoted to the interplay of theoretical calcula‐tions and experiments in catalysis by polymer stabilized Au NCs. The present article mainly summa‐rizes our progress in understanding this interplay in polymer‐stabilized Au NC catalysis.
文摘Tautomeric forms of Thiosemicarbazones have been investigated by spectrometric methods, their chemical reactivity and theoretical calculations of the relative tautomers stabilities. The mass spectral fragmentation of thiosemicarbazones synthesized from acetophenones has been studied by CG/MS. The analysis of the corresponding spectra shows not only the regular fragmentation mechanisms but homolytic ruptures from even-electron species. 1H NMR spectra exhibit signals for the most intense open thioketo tautomeric structure, although when using TFA a ring structure is observed in the corresponding tautomeric equilibrium. Density Functional Theory calculations (DFT) also provide evidence to support the experimental observations by GC-MS and 1H NMR. Methylation reactions give support to the occurrence of the thioenol tautomeric form which would be the second most abundant according to the Density Functional Theoretical calculations.
基金financial support from the National Natural Science Foundation of China(21676036)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(CYS-20040)。
文摘As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.
基金supported by the Beijing Municipal Science&Technology Commission(No.Z191100007219009)the National Natural Science Foundation of China(No.21773255)。
文摘We measured the photoelectron spectra of Al_(n)C_(4)^(−)(n=2−4)clusters by using size-selected anion photoelectron spectroscopy.The structures of Al_(n)C_(4)^(−/0)(n=2−4)clusters were explored with quantum chemistry calculations and were determined by comparing the theoretical results with the experimental spectra.It is found that the most stable structure of Al_(2)C_(4)^(−) anion is a C_(2v)symmetry planar structure with two Al atoms interacting with two C_(2)units.In addition,Al_(2)C_(4)^(−) anion also has a D∞h symmetry linear structure with two Al atoms located at the two ends of a C_(4)chain,which is slightly higher in energy than the planar structure.The most stable structure of neutral Al_(2)C_(4)has a D∞h symmetry linear structure.The most stable structure of Al_(3)C_(4)^(−) anion is a planar structure with three Al atoms interacting with two C_(2)units.Whereas neutral Al_(3)C_(4)cluster has a C_(2v)symmetric V-shaped bent structure.The global minima structures of both Al_(4)C_(4)^(−) and neutral Al_(4)C_(4)are C_(2)h symmetry planar structures with four Al atoms interacting with the ends of two C_(2)units.Adaptive natural density partitioning analyses of Al_(n)C_(4)^(−)(n=2−4)clusters show that the interactions between the Al atoms and C_(2)units have bothσandπcharacters.
基金supported by the National Natural Science Foundation of China (No.21273246 and No.21103202)the Chinese Academy of Sciences (No.QYZDB-SSW-SLH024)+3 种基金the Natural Science Foundation of Shandong Province of China (No.ZR2018BB040)Open Funds of Beijing National Laboratory for Molecular Sciences (No.BNLMS201804)Research Start-up Funds (Doctoral Science Foundation) of Heze University (No.XY18BS02)Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) (No.2018VMA0011)
文摘Investigating the structures and properties of Au-Ge mixed clusters can give insight into the microscopic mechanisms in gold-catalyzed Ge films and can also provide valuable information for the production of germanium-based functional materials. In this work, size-selected anion photoelectron spectroscopy and theoretical calculations were used to explore the structural evolution and electronic properties of Au2Gen^-/0 (n=1-8) clusters. It is found that the two Au atoms in Au2Gen^-/0 (n=1-8) showed high coordination numbers and weak aurophilic interactions. The global minima of Au2Gen- anions and Au2Gen neutrals are in spin doublet and singlet states, respectively. Au2Gen- anions and Au2Gen neutrals showed similar structural features, except for Au2Ge4^-/0 and Au2Ge5^-/0. The C2v symmetric V-shaped structure is observed for Au2Ge1^-/0, while Au2Ge2^-/0 has a C2v symmetric dibridged structure. Au2Ge3^-/0 can be viewed as the two Au atoms attached to different Ge-Ge bonds of Ge3 triangle. Au2Ge4- has two Au atoms edge-capping Ge4 tetrahedron, while Au2Ge4 neutral adopts a C2v symmetric double Au atoms face-capping Ge4 rhombus. Au2Ge5-8^-/0 show triangular, tetragonal, and pentagonal prism-based geometries. Au2Ge6 adopts a C2v symmetric tetragonal prism structure and exhibits σ plus π double bonding characters.
文摘The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.
基金supported by the National Natural Science Foundation of China(22008169,91834303)the Open Research Fund of State Key Laboratory of Multiphase Complex Systems(MPCS-2021-D-06).
文摘The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out,while the concise but accurate theoretical or mechanism model is still not well developed.In this article,a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water.The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame.The model has achieved good trajectory prediction effect in the bubble rising experiment.The average simulation time per unit moving time of bubble is 2.5 s.
文摘Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aimed to assess the theoretical knowledge of doctors and interns in medical imaging in the northern region of Burkina Faso. Methodology: This was a descriptive cross-sectional survey based on a self-administered questionnaire. Prescribers knowledge was estimated based on scores derived from questionnaire responses. Results: We collected 106 questionnaires out of 163, i.e. a participation rate of 65.03%. The average knowledge score was 81.71% for the contribution of medical imaging to patient management. It was 60.02% for the indications/counter-indications of radiological examinations and 72.56% for the risks associated with exposure to radiation during these examinations. The score was 59.83% for the methods used to select the appropriate radiological examination. As regards the completeness of the clinical and biological information on the forms requesting imaging examinations, the score was 96.65%. Specialist doctors had the highest overall level of knowledge (74.68%). Conclusion: Improved technical facilities, good initial and in-service training, and interdisciplinary collaboration will help to ensure that imaging tests are properly prescribed, leading to better patient care.
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and “Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.
基金supported by Stability Supports Research Project of Treasury Department(No.197801)Talent Fund of CIAE(No.219213)。
文摘Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.
文摘This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods.
基金National Natural Science Foundation of China(Grant No.11872013)for supporting this project.
文摘Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.
基金supported by the National Key R&D Program of China(2022YFB3708600,2021YFA0715802)Aeronautical Science Foundation of China(2022Z055053004)+1 种基金Fund of Key Laboratory of National Defense Science and Technology(WDZC20235250505)National Major Science and Technology Projects of China(J2022-VI-0011-0042).
文摘Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field.A novel theoretical method through an inverse composition design route,i.e.initially ensuring the oxide scale with excellent anti-ablation stability,is proposed to improve the ablation resistance of the highentropy carbide coatings.In this work,the(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))C1-δ(HEC)coatings were prepared by the inverse design concept and verified by the ablation resistance experiment.The linear ablation rate of the HEC coatings is1.45μm/s,only 4.78%of the pristine HfC coatings after the oxyacetylene ablation at 4.18 MW/m2.The HEC possesses higher toughness with a higher Pugh's ratio of 1.55 in comparison with HfC(1.30).The in-situ formed dense(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))O2-δoxide scale during ablation benefits to improve the anti-ablation performance attributed to its high structural adaptability with a lattice constant change not exceeding 0.19%at 2000-2300℃.The current investigation demonstrates the effectiveness of the inverse theoretical design,providing a novel optimization approach for ablation protection of high-entropy carbide coatings.
文摘Background: Pericardial effusion may progress to cardiac tamponade when pressure around the heart increases to a level comparable to that of the right and left atria. Patients with cardiac tamponade need timely completion of emergency pericardiocentesis to relieve the threat to the patient’s life, and to save valuable time for patients who need emergency thoracotomy and pericardial window drainage. Pericardiocentesis is a necessary clinical skill for residents in standardized training. In addition, nurses who are familiar with this technology can better assist clinicians to perform this operation. In order to make the medical staff quickly master the theoretical knowledge of emergency pericardiocentesis, we designed a “1 + 1 + 1” teaching method for the theoretical teaching of emergency pericardiocentesis. Objective: This study aims to explore the effectiveness of the “1 + 1 + 1” teaching method in the theoretical teaching of emergency pericardiocentesis. Methods: We used an English teaching video of emergency pericardiocentesis and applied the “1 + 1 + 1” teaching method for theoretical teaching. A questionnaire survey was conducted before and after the lecture among 19 medical staff of different years of service to understand their mastery of the theoretical content of emergency pericardiocentesis before and after the lecture. According to the years of service, the medical staff were divided into three groups: 1 - 3 years (Group A), 4 - 10 years (Group B), and over 10 years (Group C), and the changes in the mastery of various contents by the overall medical staff and each group were statistically analyzed. Results: Before the lecture, the number of people who mastered the indications, contraindications, most commonly used methods, and common complications of emergency pericardiocentesis were 15, 12, 16, and 17, respectively, whereas after the lecture, these numbers increased to 17, 19, 19, and 19, respectively. The overall mastery before and after the lecture was statistically significant (p Conclusion: The “1 + 1 + 1” teaching method can effectively improve the overall mastery level of medical staff’s theoretical knowledge of emergency pericardiocentesis, especially in improving the mastery of contraindications of this operation.
文摘In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.