In this work we study all-optical multi-channel return-to-zero (RZ)-on-off keying (OOK) to nonreturn-to-zero (NRZ)-OOK format conversion in single uniform fiber Bragg grating (FBG) for mixed line-rate dense wa...In this work we study all-optical multi-channel return-to-zero (RZ)-on-off keying (OOK) to nonreturn-to-zero (NRZ)-OOK format conversion in single uniform fiber Bragg grating (FBG) for mixed line-rate dense wave- length-division multiplexing systems using mathematical simulations. Forty and 20 Gbit/s RZ-OOK signals with 33% and 50% duty cycles are converted to NRZ-OOK signals in single uniform FBG with 21~ reflectivity. Impact of amplitude noise from FBG contrast profile on modulation format conversion efficiency is also studied.展开更多
基金supported by the European Social Fund within the Project No.2013/0012/1DP/1.1.1.2.0/13/APIA/VIAA/051
文摘In this work we study all-optical multi-channel return-to-zero (RZ)-on-off keying (OOK) to nonreturn-to-zero (NRZ)-OOK format conversion in single uniform fiber Bragg grating (FBG) for mixed line-rate dense wave- length-division multiplexing systems using mathematical simulations. Forty and 20 Gbit/s RZ-OOK signals with 33% and 50% duty cycles are converted to NRZ-OOK signals in single uniform FBG with 21~ reflectivity. Impact of amplitude noise from FBG contrast profile on modulation format conversion efficiency is also studied.