基于输电线路等传变理论分析可知,电容式电压互感器(capacitive voltage transformer,CVT)的暂态特性会造成参与距离保护计算的电压和电流经过的传变环节不一致,是引起距离保护暂态超越的重要因素。因此提出一种等传变快速距离保护方案...基于输电线路等传变理论分析可知,电容式电压互感器(capacitive voltage transformer,CVT)的暂态特性会造成参与距离保护计算的电压和电流经过的传变环节不一致,是引起距离保护暂态超越的重要因素。因此提出一种等传变快速距离保护方案,使保护安装处的三相电压和电流与故障点电压经过相同的传变环节,新方法主要包括3个步骤,即故障点电压的重新构造、虚拟数字传变以及求解R-L模型微分方程。ATP仿真结果表明,所提方法能有效地减小了CVT引起的暂态误差,故障后15 ms左右测距误差不超过5%,明显优于基于CVT暂态误差估计或系统线路阻抗比的各种自适应保护算法(测距误差不超过5%一般需要30 ms以上)。展开更多
进入等电位极导线是开展±800 kV特高压直流输电线路带电作业的关键环节,优化带电作业人员进出等电位的路径对确保人员的安全具有重要意义。本研究基于电位转移电流及其电弧能量的计算优化进出等电位路径,搭建了电弧能量计算模型,...进入等电位极导线是开展±800 kV特高压直流输电线路带电作业的关键环节,优化带电作业人员进出等电位的路径对确保人员的安全具有重要意义。本研究基于电位转移电流及其电弧能量的计算优化进出等电位路径,搭建了电弧能量计算模型,利用有限元(FEM)计算了3种进入导线方式下的人体电位、不同转移距离、悬浮电位人体-极导线的局部电容,分析了不同进出方式下与电位转移电流大小及电弧能量之间的关系。结果表明:从下方进入导线时人体电位最低,此时进行电位转移时的电弧能量在3种进入方式中最大;从上方进入导线时人体电位最高,其电位转移电弧能量最小。该计算方法和结果可供±800 k V直流输电线路带电作业进入路径选取和安全防护用具设计时参考。展开更多
文摘基于输电线路等传变理论分析可知,电容式电压互感器(capacitive voltage transformer,CVT)的暂态特性会造成参与距离保护计算的电压和电流经过的传变环节不一致,是引起距离保护暂态超越的重要因素。因此提出一种等传变快速距离保护方案,使保护安装处的三相电压和电流与故障点电压经过相同的传变环节,新方法主要包括3个步骤,即故障点电压的重新构造、虚拟数字传变以及求解R-L模型微分方程。ATP仿真结果表明,所提方法能有效地减小了CVT引起的暂态误差,故障后15 ms左右测距误差不超过5%,明显优于基于CVT暂态误差估计或系统线路阻抗比的各种自适应保护算法(测距误差不超过5%一般需要30 ms以上)。
文摘进入等电位极导线是开展±800 kV特高压直流输电线路带电作业的关键环节,优化带电作业人员进出等电位的路径对确保人员的安全具有重要意义。本研究基于电位转移电流及其电弧能量的计算优化进出等电位路径,搭建了电弧能量计算模型,利用有限元(FEM)计算了3种进入导线方式下的人体电位、不同转移距离、悬浮电位人体-极导线的局部电容,分析了不同进出方式下与电位转移电流大小及电弧能量之间的关系。结果表明:从下方进入导线时人体电位最低,此时进行电位转移时的电弧能量在3种进入方式中最大;从上方进入导线时人体电位最高,其电位转移电弧能量最小。该计算方法和结果可供±800 k V直流输电线路带电作业进入路径选取和安全防护用具设计时参考。