A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding th...A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.展开更多
To enhance the separation selectivity of Mg-MOF-74 towards CO_(2) in a CO_(2)/N_(2) mixture,a series of Mg-MOF-74 and Ni_(x)/Mg_(1-x)-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper.It was foun...To enhance the separation selectivity of Mg-MOF-74 towards CO_(2) in a CO_(2)/N_(2) mixture,a series of Mg-MOF-74 and Ni_(x)/Mg_(1-x)-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper.It was found that the adsorption capacity of Mg-MOF-74 for CO_(2) could be effectively increased by optimizing the amount of acetic acid.On this basis,the bimetal MOF-74 adsorbent was prepared by metal modification.The multi-component dynamic adsorption penetration analysis was utilized to examine the CO_(2) adsorption capacity and CO_(2)/N_(2) selectivity of the diverse adsorbent materials.The results showed that Ni0.11/Mg0.89-MOF-74 showed a CO_(2) adsorption capacity of 7.02 mmol/g under pure CO_(2) atmosphere and had a selectivity of 20.50 for CO_(2)/N_(2) under 15% CO_(2)/85%N_(2) conditions,which was 10.2% and 18.02% higher than that of Mg-MOF-74 respectively.Combining XPS,SEM and N_(2) adsorption-desorption characterization analysis,it was attributed to the effect of the more stable unsaturated metal sites Ni into the Mg-MOF-74 on the pore structure and the synergistic interaction between the two metals.Density Functional Theory(DFT)simulations revealed that the synergistic interaction between modulated the electrostatic potential strength and gradient of the material,which was more favorable for the adsorption of CO_(2) molecules with small diameters and large quadrupole moment.In addition,the Ni0.11/Mg0.89-MOF-74 showed commendable cyclic stability,underscoring its promising potential for practical applications.展开更多
Objectives of the research to present a modern theory of water purification for multiple purposes entitled “a novelties filtration theory of liquid chromatography-mass spectrometry” is an exceedingly sensitive and s...Objectives of the research to present a modern theory of water purification for multiple purposes entitled “a novelties filtration theory of liquid chromatography-mass spectrometry” is an exceedingly sensitive and specific analytical technique in volume layers woven fabrics that can precisely determine the identities and quantities of compounds within volume Nanotube of cotton filament of layers woven fabrics. The problems are that the filters in the local and international markets have increased complications in configuration, installation and cost without reaching the efficiency that humanity hopes. Throw materials and methods the chromatography-mass spectrometry in layers woven fabrics, and throw the nanotube of cotton filament for purification of water dyes and smells. Industry, in which mass spectrometry is a convenient, versatile method for characterization and identification of process throw the Nanotube of cotton filament for purification of water dyes and smells. Results came up with a theme “innovations in textiles”, and also, for characterization of fibers and contaminants of the fabrics. Additive manufacturing in layers woven fabrics, are the processes used to synthesize a volume object under computer control with successive material layers that have been used and highlighted. The conclusions has included chromatography-mass spectrometry drop, physico-chemical, biological, combined physical-biological and chemical-biological treatment processes recently being developed to meet Jet-filtration, the strict discharging limits set by ASTM standards. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated.展开更多
Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters us...Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.展开更多
The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare...The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion.The as-prepared sand layers possessed a water contact angle higher than 151°,demonstrating their superior superhydrophobic property.Besides,the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%,which is superior to both traditional and superwettable filtration membranes.The effect of thickness of sand layer on separation performance was also investigated.The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased.The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry.Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.展开更多
Ionic liquids(ILs)have shown excellent performance in the separation of binary azeotropes through extractive distillation[1].But the role of the ionic liquid in azeotropic system is not well understood.In this paper,C...Ionic liquids(ILs)have shown excellent performance in the separation of binary azeotropes through extractive distillation[1].But the role of the ionic liquid in azeotropic system is not well understood.In this paper,COSMO-RS model was applied to screen an appropriate IL to separate the binary azeotrope of ethyl acetate(EA)and ethanol and 1-octyl-3-methylimidazolium tetrafluoroborate([OMIM][BF4])was selected.The Quantum Mechanics(QM)calculations and molecular dynamics(MD)simulation are performed to study the interactions between the solvent molecules and[OMIM][BF4],in order to investigate the separation mechanism at the molecular level.The nature of the interactions is studied through the reduced density gradient(RDG)function and quantum theory of Atom in Molecule(QTAIM).Hydrogen bonds and van der Waals interactions are the key interactions in the complexes.The results of MD simulations indicate that the introduction of ILs has a prominent effect on the interaction between the solvent molecules,especially on reducing the number of hydrogen bonds among the solvent molecules.The radial distribution function(RDF)reveals that the interaction between the cation and solvent molecules will increase while the concentration of ILs increases.This paper provides important information for understanding the role of ILs in the separation of the azeotropic system,which is valuable to the development of new entrainers.展开更多
Tensile strain of porous membrane materials can broaden their capacity in gas separation.In this work,using van der Waals corrected density functional theory(DFT)and molecular dynamics(MD)simulations,the performance a...Tensile strain of porous membrane materials can broaden their capacity in gas separation.In this work,using van der Waals corrected density functional theory(DFT)and molecular dynamics(MD)simulations,the performance and mechanism of CO2/CH4 separation through strain-oriented graphdiyne(GDY)monolayer were studied by applying lateral strain.It is demonstrated that the CO2 permeance peaks at 1.29×10^6 gas permeation units(GPU)accompanied with CO2/CH4 selectivity of 5.27×10^3 under ultimate strain,both of which are far beyond the Robeson’s limit.Furthermore,the GDY membrane exhibited a decreasing gas diffusion energy barrier and increasing permeance with the increase of applied tensile strain.CO2 molecule tends to reoriented itself vertically to permeate the membrane.Finally,the CO2 permeability decreases with the increase of the temperature from300 K to 500 K due to conserving of rotational freedom,suggesting an abnormal permeance of CO2 in relation to temperature.Our theoretical results suggest that the stretchable GDY monolayer holds great promise to be an excellent candidate for CO2/CH4 separation,owing to its extremely high selectivity and permeability of CO2.展开更多
The based membrane extraction of Th(IV) and Yb(III) was studied with HBTMPP in heptane. The separation process of Th(IV) and Yb(III) was considered to be a kinetics competition one. The separation for the mixture of T...The based membrane extraction of Th(IV) and Yb(III) was studied with HBTMPP in heptane. The separation process of Th(IV) and Yb(III) was considered to be a kinetics competition one. The separation for the mixture of Th(IV) and Yb(III) was carried out by successive membrane extraction and stripping simultaneously. The concentration ratio of Th(IV) and Yb(III) is 16.74 in the stripping solution. The recovery of Th(IV) is 71.6%. The purity of Th(IV) is 95.74%. The separation factor of Th(IV) and Yb(III) is 2.52×106, which was obtained by interfacial kinetics.展开更多
In this paper, an oscillation frequency equation for a pizoelectric sensor with two separated-electrodes is theoretically derived and experimentally verified. The correlatione of the oscillation frequency and the liqu...In this paper, an oscillation frequency equation for a pizoelectric sensor with two separated-electrodes is theoretically derived and experimentally verified. The correlatione of the oscillation frequency and the liquid properties are investigated.展开更多
A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASI...A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.展开更多
Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use ...Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.展开更多
The introduction of functionalized magnetizable particles and high-gradient magnetic separation represents a time and money saving alternative to conventional purification and separation unit operations in the biotech...The introduction of functionalized magnetizable particles and high-gradient magnetic separation represents a time and money saving alternative to conventional purification and separation unit operations in the biotechnical sector. This technique has some advantages especially for the recycling of immobilized enzymes. A new magnetic filter with sight glasses was constructed and produced to study the performance of high-gradient magnetic separation at varied parameters. By optical analysis the buildup of a clogging was identified as the major parameter which affected the separation performance. For the cleaning procedure, a two-phase flow of water with highly dispersed air bubbles was tested which led to a nearly complete cleaning of the filter chamber.展开更多
The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological pro...The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological process design. The selective separation of the magnetizable particles is performed for example by a high-gradient magnetic separator. In this study FEM and CFD simulations of the magnetic field and the fluid flow field within a filter chamber of a magnetic separator were carried out, to find an optimal separator design. The motion of virtual magnetizable particles was calculated with a one-way coupled Lagrangian approach in order to test many geometric and parametric variations in reduced time. It was found that a flow homogenisator smoothed the fluid flow, so that the linear velocity became nearly equal over the cross section in the direction of flow. Furthermore the retention of magnetizable particles increases with a high total edge length within the filter matrix.展开更多
A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated durin...A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.展开更多
The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][...The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.展开更多
A certain class K of GR homogeneous spacetimes is considered. For each pair E, ?of spacetimes from K, ?where conformal transformation g is from . Each E (being ?or its double cover, as a manifold) is interpreted as re...A certain class K of GR homogeneous spacetimes is considered. For each pair E, ?of spacetimes from K, ?where conformal transformation g is from . Each E (being ?or its double cover, as a manifold) is interpreted as related to an observer in Segal’s universal cosmos. The definition of separation d between E and ?is based on the integration of the conformal factor of the transformation g. The integration is carried out separately over each region where the conformal factor is no less than 1 (or no greater than 1). Certain properties of ?are proven;examples are considered;and possible directions of further research are indicated.展开更多
We employ a recently amended Born-Oppenheimer (hereafter shortly BO) approximation <a href="#1">[1]</a> to treat inelastic scattering of slow electrons from highly excited Rydberg atoms like e<...We employ a recently amended Born-Oppenheimer (hereafter shortly BO) approximation <a href="#1">[1]</a> to treat inelastic scattering of slow electrons from highly excited Rydberg atoms like e<sup>-</sup> + He(1<em>s</em> <em>n</em><em>s</em>)→He<sup>-** </sup>for <em>n</em> <span style="white-space:nowrap;">≫</span> 1. Along these lines we replace the standard BO set of potentials by an evolution operator. In this way we take a momentum-momentum coupling inadvertently disregarded by BO into account. The BO eigenvalue problem is now replaced by an evolution equation. One eigen-evolution has been identified as Wanner channel. That channel describes the diffraction of electron pairs from a potential ridge. That diffraction causes a phase jump of π/2 in the channel evolution. Moreover we present a new conservative attractive force controlling the motion of the electron pair as a whole in the nuclear field whose potential is given by <img src="Edit_b22c3b40-4eb3-4060-aa36-c333530638c6.bmp" alt="" />. The coupling constant <em>g</em> has been calculated. That potential foreign to the standard BO approximation manifests itself by an entirely new series of isolated resonances located slightly below the double ionization threshold. This resonance ensemble compares favorably with experimental data. Further we present an evolution which forces the electron pair to the electrostatically unstable top of the potential ridge. That evolution may be regarded as quantum version of Wannier’s converging trajectory, and manifests itself here as Fresnel distribution.展开更多
Two significant findings compel a rethink of physical theories. First, using a 7-billion-year-old gamma-ray burst, Nemiroff (2012) showed that quantum foam could not exists. And second, Solomon (2011) showed that grav...Two significant findings compel a rethink of physical theories. First, using a 7-billion-year-old gamma-ray burst, Nemiroff (2012) showed that quantum foam could not exists. And second, Solomon (2011) showed that gravitational acceleration is not associated with the gravitating mass, that gravitational acceleration g is determined solely by τ the change in time dilation over a specific height multiplied by c2 or g = τc2. Seeking consistency with Special Theory of Relativity, as means to initiate this rethink, this paper examines 12 inconsistencies in physical theories that manifest from empirical data. The purpose of this examination is to identify how gravitational theories need to change or be explored, to eliminate these 12 inconsistencies. It is then proposed that spacetime is much more sophisticated than just a 4-dimensional continuum. And, that the Universe consists of at least two layers or “kenos” (Greek for vacuous), the 4-dimensional kenos, spacetime (x, y, z, t) and the 3-dimensional kenos, subspace (x, y, z) that are joined at the space coordinates (x, y, z). This explains why electromagnetic waves are transverse, and how probabilities are implemented in Nature. This paper concludes by proposing two new instruments and one test, to facilitate research into gravitational fields, the new torsion-, tension- and stress-free near field gravity probe, the gravity wave telescope, and a non-locality test.展开更多
A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we a...A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we attempted to find additional evidence for this hypothesis and show additional effects that flow from it. The effect of the physical properties of atoms and ions on their behavior during the formation of the Earth was studied. The maximum contribution to the distribution of elements was made by those elements whose content in the original protoplanets of the disk was the maximum. Correlation dependence is obtained, which allows one to calculate the distribution of elements in the protoplanetary disk. It was shown that hydrogen was the main element in the proto substance located in the zone of the Earth’s formation. In this case, various chemical compounds formed, most represented by hydrogen compounds—hydrides. Since the pressure inside the Earth is 375 GPa, this factor forces the chemical compounds to adopt stoichiometry and structure that would not be available in atmospheric conditions. It is shown that many chemical elements at high pressure in a hydrogen medium form simple hydrides and super hydrides—polyhydrides with high hydrogen content. Pressure leads to a higher density of matter inside the planet. Given the possibility of forming polyhydrides, there is the possibility of binding the initially available hydrogen in an amount that can reach 49.3 mole%. Young Earth could contain about 10.7 mass% of hydrogen in hydrides, polyhydrides, and adsorbed form is almost twice higher than previous estimates. This fact additionally confirms the theory of the original hydride Earth. In hydrides, the occurrence of the phenomenon of superconductivity was discovered. Polyhydrides were shown as potential superconductors with a high critical temperature above 200 K. We, based on these data, hypothesized the presence of superconducting properties in the Earth’s core, which explains the presence of a magnetic field in the Earth, as well as the unevenness and instability of this field and the possibility of migration of the Earth’s poles. The fact that the Earth has a hydroid core causes its change in time due to the instability of hydrides. Arranged several possible models of the destruction of the Earth’s core. The calculations showed that both models give close results. These results give predictions that can be measured. The proposed models also made it possible to estimate the initial size of the Earth. Possible ways of further testing the hypothesis of the initial hydride Earth is shown.展开更多
In the view of pragmatics, and based on relevance theory, this thesis gives analysis to Zhao Benshan's short sketch via typical cases to find the factors triggering humorous effects, so as to understand the specif...In the view of pragmatics, and based on relevance theory, this thesis gives analysis to Zhao Benshan's short sketch via typical cases to find the factors triggering humorous effects, so as to understand the specific pragmatic effect of short sketch words.展开更多
基金funded by the National Science and Technology Support Program(2011BAK12B00)the International Cooperation Project of the Department of Science and Technology of Sichuan Province(Grant No.2009HH0005).
文摘A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.
基金supported by National Natural Science Foundation of China(U23A20100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA0390404)+5 种基金ICC CAS SCJC-DT-2023-03,the Foundation of State Key Laboratory of Coal Conversion(J24-25-619)Youth Innovation Promotion Association CAS(2018209,2020179)Key R&D Program of Shanxi Province(202102090301008,202202090301013)the special fund for S&T Innovation Team of Shanxi Province(202204051001012)Project of International Cooperation and Exchange NSFC-RFBR(22011530069)Tianjin Science and Technology Plan Project(22YFYSHZ00290)。
文摘To enhance the separation selectivity of Mg-MOF-74 towards CO_(2) in a CO_(2)/N_(2) mixture,a series of Mg-MOF-74 and Ni_(x)/Mg_(1-x)-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper.It was found that the adsorption capacity of Mg-MOF-74 for CO_(2) could be effectively increased by optimizing the amount of acetic acid.On this basis,the bimetal MOF-74 adsorbent was prepared by metal modification.The multi-component dynamic adsorption penetration analysis was utilized to examine the CO_(2) adsorption capacity and CO_(2)/N_(2) selectivity of the diverse adsorbent materials.The results showed that Ni0.11/Mg0.89-MOF-74 showed a CO_(2) adsorption capacity of 7.02 mmol/g under pure CO_(2) atmosphere and had a selectivity of 20.50 for CO_(2)/N_(2) under 15% CO_(2)/85%N_(2) conditions,which was 10.2% and 18.02% higher than that of Mg-MOF-74 respectively.Combining XPS,SEM and N_(2) adsorption-desorption characterization analysis,it was attributed to the effect of the more stable unsaturated metal sites Ni into the Mg-MOF-74 on the pore structure and the synergistic interaction between the two metals.Density Functional Theory(DFT)simulations revealed that the synergistic interaction between modulated the electrostatic potential strength and gradient of the material,which was more favorable for the adsorption of CO_(2) molecules with small diameters and large quadrupole moment.In addition,the Ni0.11/Mg0.89-MOF-74 showed commendable cyclic stability,underscoring its promising potential for practical applications.
文摘Objectives of the research to present a modern theory of water purification for multiple purposes entitled “a novelties filtration theory of liquid chromatography-mass spectrometry” is an exceedingly sensitive and specific analytical technique in volume layers woven fabrics that can precisely determine the identities and quantities of compounds within volume Nanotube of cotton filament of layers woven fabrics. The problems are that the filters in the local and international markets have increased complications in configuration, installation and cost without reaching the efficiency that humanity hopes. Throw materials and methods the chromatography-mass spectrometry in layers woven fabrics, and throw the nanotube of cotton filament for purification of water dyes and smells. Industry, in which mass spectrometry is a convenient, versatile method for characterization and identification of process throw the Nanotube of cotton filament for purification of water dyes and smells. Results came up with a theme “innovations in textiles”, and also, for characterization of fibers and contaminants of the fabrics. Additive manufacturing in layers woven fabrics, are the processes used to synthesize a volume object under computer control with successive material layers that have been used and highlighted. The conclusions has included chromatography-mass spectrometry drop, physico-chemical, biological, combined physical-biological and chemical-biological treatment processes recently being developed to meet Jet-filtration, the strict discharging limits set by ASTM standards. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated.
文摘Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.
基金supported by the Northeast Petroleum University Youth Science Foundation of China (Grant No. 15071120619)Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF19B05)
文摘The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion.The as-prepared sand layers possessed a water contact angle higher than 151°,demonstrating their superior superhydrophobic property.Besides,the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%,which is superior to both traditional and superwettable filtration membranes.The effect of thickness of sand layer on separation performance was also investigated.The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased.The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry.Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.
基金support from the Program for the National Key R&D Program of China(2018YFB0604900)the National Natural Science Foundation of China(No.21878219)+1 种基金the financial support by the Natural Sciences and Engineering Research Council(NSERC)of Canada(RGPIN-4903-2014)China Scholarship Council(CSC)for supporting his doctoral study at McMaster University(No.201500090106)
文摘Ionic liquids(ILs)have shown excellent performance in the separation of binary azeotropes through extractive distillation[1].But the role of the ionic liquid in azeotropic system is not well understood.In this paper,COSMO-RS model was applied to screen an appropriate IL to separate the binary azeotrope of ethyl acetate(EA)and ethanol and 1-octyl-3-methylimidazolium tetrafluoroborate([OMIM][BF4])was selected.The Quantum Mechanics(QM)calculations and molecular dynamics(MD)simulation are performed to study the interactions between the solvent molecules and[OMIM][BF4],in order to investigate the separation mechanism at the molecular level.The nature of the interactions is studied through the reduced density gradient(RDG)function and quantum theory of Atom in Molecule(QTAIM).Hydrogen bonds and van der Waals interactions are the key interactions in the complexes.The results of MD simulations indicate that the introduction of ILs has a prominent effect on the interaction between the solvent molecules,especially on reducing the number of hydrogen bonds among the solvent molecules.The radial distribution function(RDF)reveals that the interaction between the cation and solvent molecules will increase while the concentration of ILs increases.This paper provides important information for understanding the role of ILs in the separation of the azeotropic system,which is valuable to the development of new entrainers.
基金financial support received from the National Natural Science Foundation of China(21776301)the Science Foundation of China University of Petroleum,Beijing(2462018BJC004)。
文摘Tensile strain of porous membrane materials can broaden their capacity in gas separation.In this work,using van der Waals corrected density functional theory(DFT)and molecular dynamics(MD)simulations,the performance and mechanism of CO2/CH4 separation through strain-oriented graphdiyne(GDY)monolayer were studied by applying lateral strain.It is demonstrated that the CO2 permeance peaks at 1.29×10^6 gas permeation units(GPU)accompanied with CO2/CH4 selectivity of 5.27×10^3 under ultimate strain,both of which are far beyond the Robeson’s limit.Furthermore,the GDY membrane exhibited a decreasing gas diffusion energy barrier and increasing permeance with the increase of applied tensile strain.CO2 molecule tends to reoriented itself vertically to permeate the membrane.Finally,the CO2 permeability decreases with the increase of the temperature from300 K to 500 K due to conserving of rotational freedom,suggesting an abnormal permeance of CO2 in relation to temperature.Our theoretical results suggest that the stretchable GDY monolayer holds great promise to be an excellent candidate for CO2/CH4 separation,owing to its extremely high selectivity and permeability of CO2.
基金Acknowledgements- This project supported by State Key Project of Fundamental Research (GrantNo.1998061302) and the National Na
文摘The based membrane extraction of Th(IV) and Yb(III) was studied with HBTMPP in heptane. The separation process of Th(IV) and Yb(III) was considered to be a kinetics competition one. The separation for the mixture of Th(IV) and Yb(III) was carried out by successive membrane extraction and stripping simultaneously. The concentration ratio of Th(IV) and Yb(III) is 16.74 in the stripping solution. The recovery of Th(IV) is 71.6%. The purity of Th(IV) is 95.74%. The separation factor of Th(IV) and Yb(III) is 2.52×106, which was obtained by interfacial kinetics.
文摘In this paper, an oscillation frequency equation for a pizoelectric sensor with two separated-electrodes is theoretically derived and experimentally verified. The correlatione of the oscillation frequency and the liquid properties are investigated.
文摘A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.
基金supported by the National Natural Science Foundation of China(No.22078244)Scientific research and development project of SINOPEC(No.222443)the Science and Technology Plans of Tianjin(No.20JCYBJC00120).
文摘Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.
文摘The introduction of functionalized magnetizable particles and high-gradient magnetic separation represents a time and money saving alternative to conventional purification and separation unit operations in the biotechnical sector. This technique has some advantages especially for the recycling of immobilized enzymes. A new magnetic filter with sight glasses was constructed and produced to study the performance of high-gradient magnetic separation at varied parameters. By optical analysis the buildup of a clogging was identified as the major parameter which affected the separation performance. For the cleaning procedure, a two-phase flow of water with highly dispersed air bubbles was tested which led to a nearly complete cleaning of the filter chamber.
文摘The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological process design. The selective separation of the magnetizable particles is performed for example by a high-gradient magnetic separator. In this study FEM and CFD simulations of the magnetic field and the fluid flow field within a filter chamber of a magnetic separator were carried out, to find an optimal separator design. The motion of virtual magnetizable particles was calculated with a one-way coupled Lagrangian approach in order to test many geometric and parametric variations in reduced time. It was found that a flow homogenisator smoothed the fluid flow, so that the linear velocity became nearly equal over the cross section in the direction of flow. Furthermore the retention of magnetizable particles increases with a high total edge length within the filter matrix.
基金support through Special Basic Research Fund of China Central University(No.2011QH01)Innovative Experiment Projects for Undergraduates
文摘A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.
基金Supported by the National Basic Research Program of China(2013CB733501)the National Natural Science Foundation of China(21136004,21176112,21476106,and21428601)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20133221110001)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.
文摘A certain class K of GR homogeneous spacetimes is considered. For each pair E, ?of spacetimes from K, ?where conformal transformation g is from . Each E (being ?or its double cover, as a manifold) is interpreted as related to an observer in Segal’s universal cosmos. The definition of separation d between E and ?is based on the integration of the conformal factor of the transformation g. The integration is carried out separately over each region where the conformal factor is no less than 1 (or no greater than 1). Certain properties of ?are proven;examples are considered;and possible directions of further research are indicated.
文摘We employ a recently amended Born-Oppenheimer (hereafter shortly BO) approximation <a href="#1">[1]</a> to treat inelastic scattering of slow electrons from highly excited Rydberg atoms like e<sup>-</sup> + He(1<em>s</em> <em>n</em><em>s</em>)→He<sup>-** </sup>for <em>n</em> <span style="white-space:nowrap;">≫</span> 1. Along these lines we replace the standard BO set of potentials by an evolution operator. In this way we take a momentum-momentum coupling inadvertently disregarded by BO into account. The BO eigenvalue problem is now replaced by an evolution equation. One eigen-evolution has been identified as Wanner channel. That channel describes the diffraction of electron pairs from a potential ridge. That diffraction causes a phase jump of π/2 in the channel evolution. Moreover we present a new conservative attractive force controlling the motion of the electron pair as a whole in the nuclear field whose potential is given by <img src="Edit_b22c3b40-4eb3-4060-aa36-c333530638c6.bmp" alt="" />. The coupling constant <em>g</em> has been calculated. That potential foreign to the standard BO approximation manifests itself by an entirely new series of isolated resonances located slightly below the double ionization threshold. This resonance ensemble compares favorably with experimental data. Further we present an evolution which forces the electron pair to the electrostatically unstable top of the potential ridge. That evolution may be regarded as quantum version of Wannier’s converging trajectory, and manifests itself here as Fresnel distribution.
文摘Two significant findings compel a rethink of physical theories. First, using a 7-billion-year-old gamma-ray burst, Nemiroff (2012) showed that quantum foam could not exists. And second, Solomon (2011) showed that gravitational acceleration is not associated with the gravitating mass, that gravitational acceleration g is determined solely by τ the change in time dilation over a specific height multiplied by c2 or g = τc2. Seeking consistency with Special Theory of Relativity, as means to initiate this rethink, this paper examines 12 inconsistencies in physical theories that manifest from empirical data. The purpose of this examination is to identify how gravitational theories need to change or be explored, to eliminate these 12 inconsistencies. It is then proposed that spacetime is much more sophisticated than just a 4-dimensional continuum. And, that the Universe consists of at least two layers or “kenos” (Greek for vacuous), the 4-dimensional kenos, spacetime (x, y, z, t) and the 3-dimensional kenos, subspace (x, y, z) that are joined at the space coordinates (x, y, z). This explains why electromagnetic waves are transverse, and how probabilities are implemented in Nature. This paper concludes by proposing two new instruments and one test, to facilitate research into gravitational fields, the new torsion-, tension- and stress-free near field gravity probe, the gravity wave telescope, and a non-locality test.
文摘A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we attempted to find additional evidence for this hypothesis and show additional effects that flow from it. The effect of the physical properties of atoms and ions on their behavior during the formation of the Earth was studied. The maximum contribution to the distribution of elements was made by those elements whose content in the original protoplanets of the disk was the maximum. Correlation dependence is obtained, which allows one to calculate the distribution of elements in the protoplanetary disk. It was shown that hydrogen was the main element in the proto substance located in the zone of the Earth’s formation. In this case, various chemical compounds formed, most represented by hydrogen compounds—hydrides. Since the pressure inside the Earth is 375 GPa, this factor forces the chemical compounds to adopt stoichiometry and structure that would not be available in atmospheric conditions. It is shown that many chemical elements at high pressure in a hydrogen medium form simple hydrides and super hydrides—polyhydrides with high hydrogen content. Pressure leads to a higher density of matter inside the planet. Given the possibility of forming polyhydrides, there is the possibility of binding the initially available hydrogen in an amount that can reach 49.3 mole%. Young Earth could contain about 10.7 mass% of hydrogen in hydrides, polyhydrides, and adsorbed form is almost twice higher than previous estimates. This fact additionally confirms the theory of the original hydride Earth. In hydrides, the occurrence of the phenomenon of superconductivity was discovered. Polyhydrides were shown as potential superconductors with a high critical temperature above 200 K. We, based on these data, hypothesized the presence of superconducting properties in the Earth’s core, which explains the presence of a magnetic field in the Earth, as well as the unevenness and instability of this field and the possibility of migration of the Earth’s poles. The fact that the Earth has a hydroid core causes its change in time due to the instability of hydrides. Arranged several possible models of the destruction of the Earth’s core. The calculations showed that both models give close results. These results give predictions that can be measured. The proposed models also made it possible to estimate the initial size of the Earth. Possible ways of further testing the hypothesis of the initial hydride Earth is shown.
文摘In the view of pragmatics, and based on relevance theory, this thesis gives analysis to Zhao Benshan's short sketch via typical cases to find the factors triggering humorous effects, so as to understand the specific pragmatic effect of short sketch words.