Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obt...Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obtained by means of the modified iteration method. The relation curves of the nondimensional loading and foe deflection, as to the differential ε and μrθ and λ are shown in Figs. 2, 3, 4. In special circumstance, the results are in accordance with those in [1], [6].展开更多
The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite diffe...The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.展开更多
Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are...Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.展开更多
In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions a...In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions are constructed, the boundary layer effects are analysed and their asymptotics are proved.展开更多
In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection bein...In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.展开更多
By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary co...By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.展开更多
The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employ...The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.展开更多
A new technique for solving large deflection problem of circular plates flexural non-axisymmetrically is proposed in this paper. The large deflection problem of a circular plate with built-in edge under non-axisymmetr...A new technique for solving large deflection problem of circular plates flexural non-axisymmetrically is proposed in this paper. The large deflection problem of a circular plate with built-in edge under non-axisymmetrical load is taken as an example to clarify the principle and procedure of the technique mentioned here. The technique given here can also be used to solve large deflection problem of circular plates under other non-axisymmetrical loads and boundary conditions.展开更多
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series...In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series method is proposed. The uniformly distributed loading and the clamped but sliding boundary condition are also assumed. Then our results are compared with those from Liu Ren-huai and Shi-Yun-fang[15]. The present solution can be used ax a more accurate basis in engineering applications.展开更多
In this paper, we reexamine the method of successive approximation presented by Prof. Chien Wei-zangfor solving the problem of large deflection of a circular plate, and find that the method could be regarded as the me...In this paper, we reexamine the method of successive approximation presented by Prof. Chien Wei-zangfor solving the problem of large deflection of a circular plate, and find that the method could be regarded as the method of strained parameters in the singular perturbation theory. In terms of the parameter representing the ratio of the center deflection to the thickness of the plate, we make the asymptotic expansions of the deflection, membrane stress and the parameter of load as in Ref. [1], and then give the orthogonality conditions (i.e. the solvability conditions) for the resulting equations, by which the stiffness characteristics of the plate could be determined. It is pointed out that with the solutions for the small deflection problem of the circular plate and the orthogonality conditions, we can derive the third order approximate relations between the parameter of load and the center deflection and the first-term approximation of membrane stresses at the center and edge of the plate without solving the differential equations. For some special cases (i.e. under uniform load, under compound toad, with different boundary conditiors), we deduce the specific expressions and obtain the results in agreement with the previous ones given by Chien Wei-zang, Yeh kai-yuan and Hwang Chien in Refs. [1 - 4J.展开更多
The nonlinear free vibrations of the elastic circular thin plate with large amplitude taking radial force of inertia into account are investigated by using method similar to modified iterative method.The algorithm and...The nonlinear free vibrations of the elastic circular thin plate with large amplitude taking radial force of inertia into account are investigated by using method similar to modified iterative method.The algorithm and formulas finding its approximate analytical solution are provided,and the solution behaviors are also discussed through the calculating example.展开更多
In this paper, the perturbation solution of large deflection problem of clampedelliptical plate subjected to uniform pressure is given on the basis of the perturbationsolution of large deflection problem of similar cl...In this paper, the perturbation solution of large deflection problem of clampedelliptical plate subjected to uniform pressure is given on the basis of the perturbationsolution of large deflection problem of similar clamped circular plate (1948)[1], (1954)[2]. The analytical solution of this problem was obtained in 1957. However, due to social difficulties, these results have never been published. Nash and Cooley (1959)[3] published a brief note of similar nature, in which only the case λ=a/b=2 is given. In this paper, the analytical solution is given in detail up to the 2nd approximation. The numerical solutions are given for various Poisson ratios v =0.25, 0.30, 0.35 and for various eccentricities λ= 1, 2, 3, 4, 5, which can be used in the calculation of engineering designs.展开更多
A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this...A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.展开更多
Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite s...Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.展开更多
In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed...In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed and the axial symmetrical analytic solution of fixed circular plate under the action of uniform pressure is obtained. Comparison of this solution and the known classical solution shows that this new solution agrees better than classical solution with the experiment measurement.This gives also the quantitative effect of the thickness on the deflection of circular plate with moderate thickness.展开更多
The rubber circular plate is considered as a kind of membrane. Based on the character that there exists no bending moment inside a membrane, the geometric behavior of the rubber circular plate in expanding state was d...The rubber circular plate is considered as a kind of membrane. Based on the character that there exists no bending moment inside a membrane, the geometric behavior of the rubber circular plate in expanding state was described with the aid of a group of mathematic method. The relationship between deflection and load was attained by means of calculating stress and strain inside the curved surface of rubber plate. Meantime, based on Hencky method, the relationship between deflection and load was attained and considered as the Hencky solution. The different results given rise by the two different resolving methods were compared. The deviation results from the Hencky method was discussed, and a kind of correcting method was put forward.展开更多
Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate...Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate estimation of their hydroelastic responses to waves is very important for the design. Recently, an efficient numerical algorithm was developed by Ertekin and Kim (1999). However, in their analysis, the linear Level I Green-Naghdi (GN) theory is employed to describe fluid dynamics instead of the conventional linear wave (LW) theory of finite water depth. They claimed that this linear level I GN theory provided better predictions of the hydroelastic responses of VLFS than the linear wave theory. In this paper, a detailed derivation is given in the conventional linear wave theory framework with the same quantity as used in the linear level I GN theory framework. This allows a critical comparison between the linear wave theory and the linear level I GN theory. It is found that the linear level I GN theory can be regarded as an approximation to the linear wave theory of finite water depth. The consequences of the differences between these two theories in the predicted hydroelastic responses are studied quantitatively. And it is found that the linear level I GN theory is not superior to the linear wave theory. Finally, various factors affecting the hydroelastic response of VLFS are studied with the implemented algorithm.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The supp...The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.展开更多
文摘Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obtained by means of the modified iteration method. The relation curves of the nondimensional loading and foe deflection, as to the differential ε and μrθ and λ are shown in Figs. 2, 3, 4. In special circumstance, the results are in accordance with those in [1], [6].
文摘The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.
文摘Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.
文摘In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions are constructed, the boundary layer effects are analysed and their asymptotics are proved.
文摘In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.
文摘By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.
文摘The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.
文摘A new technique for solving large deflection problem of circular plates flexural non-axisymmetrically is proposed in this paper. The large deflection problem of a circular plate with built-in edge under non-axisymmetrical load is taken as an example to clarify the principle and procedure of the technique mentioned here. The technique given here can also be used to solve large deflection problem of circular plates under other non-axisymmetrical loads and boundary conditions.
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series method is proposed. The uniformly distributed loading and the clamped but sliding boundary condition are also assumed. Then our results are compared with those from Liu Ren-huai and Shi-Yun-fang[15]. The present solution can be used ax a more accurate basis in engineering applications.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper, we reexamine the method of successive approximation presented by Prof. Chien Wei-zangfor solving the problem of large deflection of a circular plate, and find that the method could be regarded as the method of strained parameters in the singular perturbation theory. In terms of the parameter representing the ratio of the center deflection to the thickness of the plate, we make the asymptotic expansions of the deflection, membrane stress and the parameter of load as in Ref. [1], and then give the orthogonality conditions (i.e. the solvability conditions) for the resulting equations, by which the stiffness characteristics of the plate could be determined. It is pointed out that with the solutions for the small deflection problem of the circular plate and the orthogonality conditions, we can derive the third order approximate relations between the parameter of load and the center deflection and the first-term approximation of membrane stresses at the center and edge of the plate without solving the differential equations. For some special cases (i.e. under uniform load, under compound toad, with different boundary conditiors), we deduce the specific expressions and obtain the results in agreement with the previous ones given by Chien Wei-zang, Yeh kai-yuan and Hwang Chien in Refs. [1 - 4J.
文摘The nonlinear free vibrations of the elastic circular thin plate with large amplitude taking radial force of inertia into account are investigated by using method similar to modified iterative method.The algorithm and formulas finding its approximate analytical solution are provided,and the solution behaviors are also discussed through the calculating example.
文摘In this paper, the perturbation solution of large deflection problem of clampedelliptical plate subjected to uniform pressure is given on the basis of the perturbationsolution of large deflection problem of similar clamped circular plate (1948)[1], (1954)[2]. The analytical solution of this problem was obtained in 1957. However, due to social difficulties, these results have never been published. Nash and Cooley (1959)[3] published a brief note of similar nature, in which only the case λ=a/b=2 is given. In this paper, the analytical solution is given in detail up to the 2nd approximation. The numerical solutions are given for various Poisson ratios v =0.25, 0.30, 0.35 and for various eccentricities λ= 1, 2, 3, 4, 5, which can be used in the calculation of engineering designs.
基金The study is supported by National Natural Science Foundation of China.
文摘A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.
文摘Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.
文摘In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed and the axial symmetrical analytic solution of fixed circular plate under the action of uniform pressure is obtained. Comparison of this solution and the known classical solution shows that this new solution agrees better than classical solution with the experiment measurement.This gives also the quantitative effect of the thickness on the deflection of circular plate with moderate thickness.
文摘The rubber circular plate is considered as a kind of membrane. Based on the character that there exists no bending moment inside a membrane, the geometric behavior of the rubber circular plate in expanding state was described with the aid of a group of mathematic method. The relationship between deflection and load was attained by means of calculating stress and strain inside the curved surface of rubber plate. Meantime, based on Hencky method, the relationship between deflection and load was attained and considered as the Hencky solution. The different results given rise by the two different resolving methods were compared. The deviation results from the Hencky method was discussed, and a kind of correcting method was put forward.
基金by the National Natural Science Foundation of China(50039010)the Science and Technology Development Foundation of Shanghai Municipal Government(00XD14015)
文摘Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate estimation of their hydroelastic responses to waves is very important for the design. Recently, an efficient numerical algorithm was developed by Ertekin and Kim (1999). However, in their analysis, the linear Level I Green-Naghdi (GN) theory is employed to describe fluid dynamics instead of the conventional linear wave (LW) theory of finite water depth. They claimed that this linear level I GN theory provided better predictions of the hydroelastic responses of VLFS than the linear wave theory. In this paper, a detailed derivation is given in the conventional linear wave theory framework with the same quantity as used in the linear level I GN theory framework. This allows a critical comparison between the linear wave theory and the linear level I GN theory. It is found that the linear level I GN theory can be regarded as an approximation to the linear wave theory of finite water depth. The consequences of the differences between these two theories in the predicted hydroelastic responses are studied quantitatively. And it is found that the linear level I GN theory is not superior to the linear wave theory. Finally, various factors affecting the hydroelastic response of VLFS are studied with the implemented algorithm.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
文摘The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.