This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe...This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.展开更多
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I...In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.展开更多
How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS consi...How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.展开更多
In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical in...In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.展开更多
The three core issues in the“digital human rights”debate are whether“digital human rights”are possible,necessary,and feasible.Both sides of the debate focus on discovering the value of“digital human rights”to in...The three core issues in the“digital human rights”debate are whether“digital human rights”are possible,necessary,and feasible.Both sides of the debate focus on discovering the value of“digital human rights”to individuals from a semantic level,but ignore the significance of“digital human rights”to the whole society and its subsystems at the level of social structure.By introducing Niklas Luhmann's System Theory,this observation blind spot can be eliminated.Fundamental rights are devoted to directly shaping not a physiological-psychological“individual”as a social environment but a social“person”that can be included by social systems.It is clear that digital human rights are the right to participate in digital communication of a“human”as a“person”,so they are possible in terms of conceptual definition.Digital human rights can help“people”lower the threshold for participation in digital communication,limit the excessive expansion of social systems,and promote the free and complete expression of body and mind,so they are necessary for social functions.There are limitations in the existing two ideas of“incorporating digital human rights into the constitution”.Based on the new construction idea of System Theory of Law,digital human rights as the right to participate in digital communication can be typified into digital communication in social sub-fields such as politics,economy,science,and art.The right to participate constructs a complete digital human rights system,making it feasible on the basis of the constitution.展开更多
Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable c...Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.展开更多
The advent of the big data era has presented unprecedented challenges to remedies for personal information infringement in areas such as damage assessment,proof of causation,determination of illegality,fault assessmen...The advent of the big data era has presented unprecedented challenges to remedies for personal information infringement in areas such as damage assessment,proof of causation,determination of illegality,fault assessment,and liability.Traditional tort law is unable to provide a robust response for these challenges,which severely hinders human rights protection in the digital society.The dynamic system theory represents a third path between fixed constitutive elements and general clauses.It both overcomes the rigidity of the“allor-nothing”legal effect evaluation mechanism of the“element-effect”model and avoids the uncertainty of the general clause model.It can effectively enhance the flexibility of the legal system in responding to social changes.In light of this,it is necessary to construct a dynamic foundational evaluation framework for personal information infringement under the guidance of the dynamic system theory.By relying on the dynamic interplay effect of various foundational evaluation elements,this framework can achieve a flexible evaluation of the constitutive elements of liability and the legal effects of liability for personal information infringement.Through this approach,the crisis of personal information infringement in the era of big data can be mitigated,and the realization of personal information rights as digital human rights can be promoted.展开更多
This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmo...This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.展开更多
Motivation and employee behavior have been characterized as strong factors for employee job performance.McGregor’s theory is one of the most recognized and influential theories that perfectly explains the relationshi...Motivation and employee behavior have been characterized as strong factors for employee job performance.McGregor’s theory is one of the most recognized and influential theories that perfectly explains the relationship between those factors and focuses on management and organizational behavior.Specifically,this theory emphasizes that employees are characterized as Type X or Type Y,and motivation is achieved in different ways according to the type.This paper was conducted to address important areas of McGregor’s theory,to discuss how the theory is applied in the workplace,and to elaborate on how recent studies have assembled scientific valid instruments to evaluate X and Y employee behaviors and employee performance.Recommendations for future research and applications will be addressed too.展开更多
The New General System theory was developed to be a theory of everything for complex systems within the world we can observe.This theory was constructed by supplementing a new mind-ether ontology into Bertalanffy’s g...The New General System theory was developed to be a theory of everything for complex systems within the world we can observe.This theory was constructed by supplementing a new mind-ether ontology into Bertalanffy’s general system theory framework.This theory is basically a generalization of classical mechanics rather than a revolution to it taken both by Einstein and Bohr in developing their relativity theory and quantum mechanics.The purpose of this paper is to reveal the reasons why Einstein and many others fail to unify relativity theory with quantum mechanics through comparing the main differences in philosophical opinions among NGST,Einstein,and Bohr.It is the hope of the authors that this clarification could speed up the unification process.展开更多
The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d...The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.展开更多
In this paper,different kinds of enzymes,immune factors and regulatory factors of the immune system of crustaceans are summarized and then combed systematically and thoroughly. According to the mutual influence and ef...In this paper,different kinds of enzymes,immune factors and regulatory factors of the immune system of crustaceans are summarized and then combed systematically and thoroughly. According to the mutual influence and effects of these factors,different symbolic forms are introduced to express the effects,and ultimately the whole node graph of the system is obtained. The graph theory can be used for further researches on the immune system of crustacean.展开更多
[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theo...[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theory,and GM(1,1)grey model of processing tomato yield prediction was established.The processing tomato yield in Xinjiang during 2001-2009 was as the example to carry out the instance analysis.[Result] The model had the high forecast accuracy and strong generalization ability,and was reliable for the prediction of recent processing tomato yield.[Conclusion] The research provided the reference for the macro-control of tomato industry,the processing and storage of tomato in Xinjiang.展开更多
Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synt...Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This per...This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves.展开更多
Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically...Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically investigated by means of density functional theory calculations coupled with the Marcus charge transfer model in order to seek novel photovoltaic systems. Moreover, the hole-transfer properties of BTBPD thin-film were also studied by an amorphous cell with 100 BTBPD molecules. Results revealed that the BTBPD- PC61BM system possessed a middle-sized open-circuit voltage of 0.70 V, large short-circuit current density of 16.874 mA/cm2, large fill factor of 0.846, and high power conversion effi- ciency of 10%. With the Marcus model, the charge-dissociation rate constant was predicted to be as fast as 3.079×10^13 s^-1 in the BTBPD-PC61BM interface, which was as 3-5 orders of magnitude large as the decay (radiative and non-radiative) rate constant (108-10^10 s^-1), indicating very high charge-dissociation efficiency (-100%) in the BTBPD-PC61BM system. Furthermore, by the molecular dynamics simulation, the hole mobility for BTBPD thin-film was predicted to be as high as 3.970× 10^-3 cm^2V^-1s^-1, which can be attributed to its tight packing in solid state.展开更多
Establishing a sense of ritual within tourism consumption scenarios offers tourists the opportunity for interactive engagement.Drawing upon the value co-creation theory,this study constructed an influence mechanism mo...Establishing a sense of ritual within tourism consumption scenarios offers tourists the opportunity for interactive engagement.Drawing upon the value co-creation theory,this study constructed an influence mechanism model to examine tourists'active engagement in the process of co-creating tourism experience values.It employed Partial Least Squares Structural Equation Modeling(PLS-SEM)to empirically test the proposed hypotheses.The findings demonstrate that the model constructed in the present study exhibits robust reliability,validity,and explanatory power.The perception of the sense of ritual in tourism exerts a significant positive influence on tourists’co-creation of tourism experience values,thereby significantly enhancing both the communitas and flow experienced by tourists during their travels.Moreover,such communitas and flow can mediate the influence of the sense of ritual in tourism on tourists’co-creation of tourism experience values.This study contributes to advancing the current research on tourists’co-creation of tourism experience values and the sense of ritual in tourism,thereby providing theoretical foundations for cultivating a sense of ritual within tourism consumption scenarios.展开更多
It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects...It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects,a new general system theory is developed based on a new ontology of ether and minds as the fundamental existences in the world.The two-body problem is the simplest model in mechanics and in this paper,it is re-examined by using our new general system theory.It is found that the current description of the classical full two-body problem is inappropriate since the observer and the measurement apparatus have not been explicitly considered.After considering these,it is actually a three-body problem while only the special case of the Kepler problem is the two-body problem.By introducing the concepts of psychic force and psychic field,all the possible movement states in the two-body problem can be explained within the framework of classical mechanics.There is no need to change the meanings of many fundamental concepts,such as time,space,matter,mass,and energy as done in quantum mechanics and relativity theory.This points out a new direction for the unification of different theories.展开更多
基金supported by the National Natural Science Foundation of China(82230117).
文摘This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211303)the National Natural Science Foundation of China(Grant No.91850207)the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.
基金National Natural Science Foundation of China(Grant Nos.11972193 and 92266201)。
文摘How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.
基金supported in part by the National Natural Science Foundation of China(62073003,72131001)Hong Hong Research Grants Council under GRF grants(16200619,16201120,16205421,1620-3922)Shenzhen-Hong Kong-Macao Science and Technology Innovation Fund(SGDX20201103094600006)。
文摘In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.
基金a phased achievement of the research project“Research on the Basic Issues of Digital Rule of Law from the Perspective of System Theory”(Project Approval Number 22AZD149)。
文摘The three core issues in the“digital human rights”debate are whether“digital human rights”are possible,necessary,and feasible.Both sides of the debate focus on discovering the value of“digital human rights”to individuals from a semantic level,but ignore the significance of“digital human rights”to the whole society and its subsystems at the level of social structure.By introducing Niklas Luhmann's System Theory,this observation blind spot can be eliminated.Fundamental rights are devoted to directly shaping not a physiological-psychological“individual”as a social environment but a social“person”that can be included by social systems.It is clear that digital human rights are the right to participate in digital communication of a“human”as a“person”,so they are possible in terms of conceptual definition.Digital human rights can help“people”lower the threshold for participation in digital communication,limit the excessive expansion of social systems,and promote the free and complete expression of body and mind,so they are necessary for social functions.There are limitations in the existing two ideas of“incorporating digital human rights into the constitution”.Based on the new construction idea of System Theory of Law,digital human rights as the right to participate in digital communication can be typified into digital communication in social sub-fields such as politics,economy,science,and art.The right to participate constructs a complete digital human rights system,making it feasible on the basis of the constitution.
基金National Natural Science Foundation of China under Grant 62203468Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant J2023G007+2 种基金Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001Youth Talent Program Supported by China Railway SocietyResearch Program of Beijing Hua-Tie Information Technology Corporation Limited under Grant 2023HT02.
文摘Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.
基金the“Application of the Dynamic System Theory in the Determination of Infringement Liability for Immaterial Personality Rights in the Civil Code”(Project Approval Number 2022MFXH006)a project of the young scholar research program of the Civil Law Society of CLS in 2022。
文摘The advent of the big data era has presented unprecedented challenges to remedies for personal information infringement in areas such as damage assessment,proof of causation,determination of illegality,fault assessment,and liability.Traditional tort law is unable to provide a robust response for these challenges,which severely hinders human rights protection in the digital society.The dynamic system theory represents a third path between fixed constitutive elements and general clauses.It both overcomes the rigidity of the“allor-nothing”legal effect evaluation mechanism of the“element-effect”model and avoids the uncertainty of the general clause model.It can effectively enhance the flexibility of the legal system in responding to social changes.In light of this,it is necessary to construct a dynamic foundational evaluation framework for personal information infringement under the guidance of the dynamic system theory.By relying on the dynamic interplay effect of various foundational evaluation elements,this framework can achieve a flexible evaluation of the constitutive elements of liability and the legal effects of liability for personal information infringement.Through this approach,the crisis of personal information infringement in the era of big data can be mitigated,and the realization of personal information rights as digital human rights can be promoted.
文摘This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.
文摘Motivation and employee behavior have been characterized as strong factors for employee job performance.McGregor’s theory is one of the most recognized and influential theories that perfectly explains the relationship between those factors and focuses on management and organizational behavior.Specifically,this theory emphasizes that employees are characterized as Type X or Type Y,and motivation is achieved in different ways according to the type.This paper was conducted to address important areas of McGregor’s theory,to discuss how the theory is applied in the workplace,and to elaborate on how recent studies have assembled scientific valid instruments to evaluate X and Y employee behaviors and employee performance.Recommendations for future research and applications will be addressed too.
基金This work was supported by Zhejiang Key R&D Program No.2021C03157start-up funding from Westlake University under grant number 041030150118Scientific Research Funding Project of Westlake University under Grant No.2021WUFP017.
文摘The New General System theory was developed to be a theory of everything for complex systems within the world we can observe.This theory was constructed by supplementing a new mind-ether ontology into Bertalanffy’s general system theory framework.This theory is basically a generalization of classical mechanics rather than a revolution to it taken both by Einstein and Bohr in developing their relativity theory and quantum mechanics.The purpose of this paper is to reveal the reasons why Einstein and many others fail to unify relativity theory with quantum mechanics through comparing the main differences in philosophical opinions among NGST,Einstein,and Bohr.It is the hope of the authors that this clarification could speed up the unification process.
文摘The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.
文摘In this paper,different kinds of enzymes,immune factors and regulatory factors of the immune system of crustaceans are summarized and then combed systematically and thoroughly. According to the mutual influence and effects of these factors,different symbolic forms are introduced to express the effects,and ultimately the whole node graph of the system is obtained. The graph theory can be used for further researches on the immune system of crustacean.
基金Supported by National Natural Science Fund Item(61064005)~~
文摘[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theory,and GM(1,1)grey model of processing tomato yield prediction was established.The processing tomato yield in Xinjiang during 2001-2009 was as the example to carry out the instance analysis.[Result] The model had the high forecast accuracy and strong generalization ability,and was reliable for the prediction of recent processing tomato yield.[Conclusion] The research provided the reference for the macro-control of tomato industry,the processing and storage of tomato in Xinjiang.
文摘Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
文摘This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves.
基金This work was supported by the National Natural Science Foundation of China (No.21373132, No.21502109, No.21603133), the Education Department of Shmunxi Provincial Government Research Projects (No.16JK1142, No.16JK1134), and the Scientific Research Foundation of Shaanxi University of Technology for Recruited Talents (No.SLGKYQD2-13, No.SLGKYQD2-10, No.SLGQD14-10).
文摘Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically investigated by means of density functional theory calculations coupled with the Marcus charge transfer model in order to seek novel photovoltaic systems. Moreover, the hole-transfer properties of BTBPD thin-film were also studied by an amorphous cell with 100 BTBPD molecules. Results revealed that the BTBPD- PC61BM system possessed a middle-sized open-circuit voltage of 0.70 V, large short-circuit current density of 16.874 mA/cm2, large fill factor of 0.846, and high power conversion effi- ciency of 10%. With the Marcus model, the charge-dissociation rate constant was predicted to be as fast as 3.079×10^13 s^-1 in the BTBPD-PC61BM interface, which was as 3-5 orders of magnitude large as the decay (radiative and non-radiative) rate constant (108-10^10 s^-1), indicating very high charge-dissociation efficiency (-100%) in the BTBPD-PC61BM system. Furthermore, by the molecular dynamics simulation, the hole mobility for BTBPD thin-film was predicted to be as high as 3.970× 10^-3 cm^2V^-1s^-1, which can be attributed to its tight packing in solid state.
基金This study was supported by the Humanities and Social Sciences Project of the Ministry of Education(No.23YJA790070)the Graduate Innovation Research Project of Southwest Minzu University(No.YB2022621)the Research Project of BCIMY(No.BCIMY1910).
文摘Establishing a sense of ritual within tourism consumption scenarios offers tourists the opportunity for interactive engagement.Drawing upon the value co-creation theory,this study constructed an influence mechanism model to examine tourists'active engagement in the process of co-creating tourism experience values.It employed Partial Least Squares Structural Equation Modeling(PLS-SEM)to empirically test the proposed hypotheses.The findings demonstrate that the model constructed in the present study exhibits robust reliability,validity,and explanatory power.The perception of the sense of ritual in tourism exerts a significant positive influence on tourists’co-creation of tourism experience values,thereby significantly enhancing both the communitas and flow experienced by tourists during their travels.Moreover,such communitas and flow can mediate the influence of the sense of ritual in tourism on tourists’co-creation of tourism experience values.This study contributes to advancing the current research on tourists’co-creation of tourism experience values and the sense of ritual in tourism,thereby providing theoretical foundations for cultivating a sense of ritual within tourism consumption scenarios.
基金supported by the“Construction of a Leading Innovation Team”project by the Hangzhou Municipal government,and the startup funding of New-Joined PI of Westlake University with grant number(041030150118).
文摘It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects,a new general system theory is developed based on a new ontology of ether and minds as the fundamental existences in the world.The two-body problem is the simplest model in mechanics and in this paper,it is re-examined by using our new general system theory.It is found that the current description of the classical full two-body problem is inappropriate since the observer and the measurement apparatus have not been explicitly considered.After considering these,it is actually a three-body problem while only the special case of the Kepler problem is the two-body problem.By introducing the concepts of psychic force and psychic field,all the possible movement states in the two-body problem can be explained within the framework of classical mechanics.There is no need to change the meanings of many fundamental concepts,such as time,space,matter,mass,and energy as done in quantum mechanics and relativity theory.This points out a new direction for the unification of different theories.