In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited ...Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.展开更多
Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:...Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:We utilized gene expression datasets,ferroptosis upregulated genes and applied machine learning algorithms,including LASSO and SVM-RFE,to identify key ferroptosis-related genes in pancreatic cancer.Perform Gene Ontology,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology enrichment analysis,immune infiltration analysis and correlation analysis between immune infiltrating cells and characteristic genes on differentially expressed genes using the R software package.Retrieve potential traditional Chinese medicine for targeted ferroptosis gene therapy for pancreatic cancer through Coremine and Herb databases.Results:Seventeen feature genes were identified,with significant implications for immune cell infiltration in pancreatic cancer.The results of immune cell infiltration analysis showed that B cells naive,B cells memory,T cells regulatory,and M0 macrophages were significantly upregulated in pancreatic cancer patients;Mast cells resting were significantly downregulated.Chinese herbal medicines such as ginkgo,turmeric,ginseng,Codonopsis pilosula,Zedoary turmeric,deer tendons,senna leaves,Guanmu Tong,Huangqi,and Banzhilian are potential drugs for targeted ferroptosis gene therapy for pancreatic cancer.Conclusion:TIMP1 emerged as a key gene,with several TCM herbs predicted to modulate its expression,offering new avenues for treatment.展开更多
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
The incidence of in-hospital cardiac arrest (IHCA) has increased over the past decade,with more than half occurring in intensive care units (ICUs).^([1])ICU cardiac arrest (ICU-CA)presents unique challenges,with worse...The incidence of in-hospital cardiac arrest (IHCA) has increased over the past decade,with more than half occurring in intensive care units (ICUs).^([1])ICU cardiac arrest (ICU-CA)presents unique challenges,with worse outcomes than those in monitored wards,highlighting the need for early detection and intervention.^([2])Up to 80%of patients exhibit signs of deterioration hours before IHCA.^([3])Although early warning scores based on vital signs are useful,their eff ectiveness in ICUs is limited due to abnormal physiological parameters.^([4])Laboratory markers,such as sodium,potassium,and lactate,are predictive of poor outcomes,^([5])but static measurements may not capture the patient’s trajectory.Trends in laboratory indicators,such as variability and extremes,may offer better predictive value.^([6])This study aimed to evaluate ICU-CA predictive factors,with a focus on vital signs and trends of laboratory indicators.展开更多
BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise fore...BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise forecasting of overall survival(OS)is of paramount importance for the clinical management of individuals afflicted with this malignancy.AIM To develop and validate a nomogram model that provides precise gastric cancer prevention and treatment guidance and more accurate survival outcome prediction for patients with gastric carcinoma.METHODS Data analysis was conducted on samples collected from hospitalized gastric cancer patients between 2018 and 2020.Least absolute shrinkage and selection operator,univariate,and multivariate Cox regression analyses were employed to identify independent prognostic factors.A nomogram model was developed to predict gastric cancer patient outcomes.The model's predictability and discriminative ability were evaluated via receiver operating characteristic curves.To evaluate the clinical utility of the model,Kaplan-Meier and decision curve analyses were performed.RESULTS A total of ten independent prognostic factors were identified,including body mass index,tumor-node-metastasis(TNM)stage,radiation,chemotherapy,surgery,albumin,globulin,neutrophil count,lactate dehydrogenase,and platelet-to-lymphocyte ratio.The area under the curve(AUC)values for the 1-,3-,and 5-year survival prediction in the training set were 0.843,0.850,and 0.821,respectively.The AUC values were 0.864,0.820,and 0.786 for the 1-,3-,and 5-year survival prediction in the validation set,respectively.The model exhibited strong discriminative ability,with both the time AUC and time C-index exceeding 0.75.Compared with TNM staging,the model demonstrated superior clinical utility.Ultimately,a nomogram was developed via a web-based interface.CONCLUSION This study established and validated a novel nomogram model for predicting the OS of gastric cancer patients,which demonstrated strong predictive ability.Based on these findings,this model can aid clinicians in implementing personalized interventions for patients with gastric cancer.展开更多
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr...Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.展开更多
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
Objective The relationship between fish consumption and stroke is inconsistent,and it is uncertain whether this association varies across predicted stroke risks.Methods A cohort study comprising 95,800 participants fr...Objective The relationship between fish consumption and stroke is inconsistent,and it is uncertain whether this association varies across predicted stroke risks.Methods A cohort study comprising 95,800 participants from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China project was conducted.A standardized questionnaire was used to collect data on fish consumption.Participants were stratified into low-and moderate-to-high-risk categories based on their 10-year stroke risk prediction scores.Hazard ratios(HRs)and 95%confidence intervals(CIs)were estimated using Cox proportional hazard models and additive interaction by relative excess risk due to interaction(RERI),attributable proportion(AP),and synergy index(SI).Results During 703,869 person-years of follow-up,2,773 incident stroke events were identified.Higher fish consumption was associated with a lower risk of stroke,particularly among moderate-to-high-risk individuals(HR=0.53,95%CI:0.47-0.60)than among low-risk individuals(HR=0.64,95%CI:0.49-0.85).A significant additive interaction between fish consumption and predicted stroke risk was observed(RERI=4.08,95%CI:2.80-5.36;SI=1.64,95%CI:1.42-1.89;AP=0.36,95%CI:0.28-0.43).Conclusion Higher fish consumption was associated with a lower risk of stroke,and this beneficial association was more pronounced in individuals with moderate-to-high stroke risk.展开更多
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume...Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China.展开更多
Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challen...Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.展开更多
BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the cor...BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes.展开更多
BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset D...BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset DF and develop a robust prediction model for hospitalized patients with type 2 diabetes.METHODS We included 6301 hospitalized patients with type 2 diabetes from January 2016 to December 2021.A univariate Cox model and least absolute shrinkage and selection operator analyses were applied to select the appropriate predictors.Nonlinear associations between continuous variables and the risk of DF were explored using restricted cubic spline functions.The Cox model was further employed to evaluate the impact of risk factors on DF.The area under the curve(AUC)was measured to evaluate the accuracy of the prediction model.RESULTS Seventy-five diabetic inpatients experienced DF.The incidence density of DF was 4.5/1000 person-years.A long duration of diabetes,lower extremity arterial disease,lower serum albumin,fasting plasma glucose(FPG),and diabetic nephropathy were independently associated with DF.Among these risk factors,the serum albumin concentration was inversely associated with DF,with a hazard ratio(HR)and 95%confidence interval(CI)of 0.91(0.88-0.95)(P<0.001).Additionally,a U-shaped nonlinear relationship was observed between the FPG level and DF.After adjusting for other variables,the HRs and 95%CI for FPG<4.4 mmol/L and≥7.0 mmol/L were 3.99(1.55-10.25)(P=0.004)and 3.12(1.66-5.87)(P<0.001),respectively,which was greater than the mid-range level(4.4-6.9 mmol/L).The AUC for predicting DF over 3 years was 0.797.CONCLUSION FPG demonstrated a U-shaped relationship with DF.Serum albumin levels were negatively associated with DF.The prediction nomogram model of DF showed good discrimination ability using diabetes duration,lower extremity arterial disease,serum albumin,FPG,and diabetic nephropathy(Clinicaltrial.gov NCT05519163).展开更多
The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To...The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To address the shortcomings of the current rockburst prediction models, which have a limited number of samples and rely on manual test results as the majority of their input features, this paper proposes rockburst prediction models based on multi-featured drilling parameters of rock drilling jumbo. Firstly, four original drilling parameters, namely hammer pressure (Ph), feed pressure (Pf), rotation pressure (Pr), and feed speed (VP), together with the rockburst grades, were collected from 1093 rockburst cases. Then, a feature expansion investigation was performed based on the four original drilling parameters to establish a drilling parameter feature system and a rockburst prediction database containing 42 features. Furthermore, rockburst prediction models based on multi-featured drilling parameters were developed using the extreme tree (ET) algorithm and Bayesian optimization. The models take drilling parameters as input parameters and rockburst grades as output parameters. The effects of Bayesian optimization and the number of drilling parameter features on the model performance were analyzed using the accuracy, precision, recall and F1 value of the prediction set as the model performance evaluation indices. The results show that the Bayesian optimized model with 42 drilling parameter features as inputs performs best, with an accuracy of 91.89%. Finally, the reliability of the models was validated through field tests.展开更多
In this article,we discuss the study by Cheng et al,published in the World Journal of Gastroenterology,focusing on predictive methods for post-hepatectomy liver failure(PHLF).PHLF is a common and serious complication,...In this article,we discuss the study by Cheng et al,published in the World Journal of Gastroenterology,focusing on predictive methods for post-hepatectomy liver failure(PHLF).PHLF is a common and serious complication,and accurate prediction is critical for clinical management.The study examines the potential of ultrasound elastography and splenic size in predicting PHLF.Ultrasound elastography reflects liver functional reserve,while splenic size provides additional predictive value.By integrating these factors with serological markers,we developed a comprehensive prediction model that effectively stratifies patient risk and supports personalized clinical decisions.This approach offers new insights into predicting PHLF.These methods not only assist clinicians in identifying high-risk patients earlier but also provide scientific support for personalized treatment strategies.Future research will aim to validate the model's accuracy with larger sample sizes,further enhancing the clinical application of these non-invasive indicators.展开更多
AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Uni...AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gast...BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gastrectomy;however,post-surgical pancreatic fistula remain a serious issue.These fistulas can lead to abdominal infections,anastomotic leakage,increased costs,and pain;thus,early diagnosis and prevention are crucial for a better prognosis.Currently,C-reactive protein(CRP),procalcitonin(PCT),and total bilirubin(TBil)levels are used to predict post-operative infections and anastomotic leakage.However,their predictive value for pancreatic fistula after radical gastrectomy for gastric cancer remains unclear.The present study was conducted to determine their predictive value.AIM To determine the predictive value of CRP,PCT,and TBil levels for pancreatic fistula after gastric cancer surgery.METHODS In total,158 patients who underwent radical gastrectomy for gastric cancer at our hospital between January 2019 and January 2023 were included.The patients were assigned to a pancreatic fistula group or a non-pancreatic fistula group.Multivariate logistic analysis was conducted to assess the factors influencing development of a fistula.Receiver operating characteristic(ROC)curves were used to determine the predictive value of serum CRP,PCT,and TBil levels on day 1 postsurgery.RESULTS On day 1 post-surgery,the CRP,PCT,and TBil levels were significantly higher in the pancreatic fistula group than in the non-pancreatic fistula group(P<0.05).A higher fistula grade was associated with higher levels of the indices.Univariate analysis revealed significant differences in the presence of diabetes,hyperlipidemia,pancreatic injury,splenectomy,and the biomarker levels(P<0.05).Logistic multivariate analysis identified diabetes,hyperlipidemia,pancreatic injury,CRP level,and PCT level as independent risk factors.ROC curves yielded predictive values for CRP,PCT,and TBil levels,with the PCT level having the highest area under the curve(AUC)of 0.80[95%confidence interval(CI):0.72-0.90].Combined indicators improved the predictive value,with an AUC of 0.86(95%CI:0.78-0.93).CONCLUSION Elevated CRP,PCT,and TBil levels predict risk of pancreatic fistula post-gastrectomy for gastric cancer.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金Supported by the National Natural Science Foundation,China(No.61402011)the Open Project Program of the Key Laboratory of Embedded System and Service Computing of Ministry of Education(No.ESSCKF2021-05).
文摘Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.
基金supported by the Modern Traditional Chinese Medicine Haihe Laboratory science and technology project(22HHZYSS00005)and the National Administration of Traditional Chinese Medicine Young Qihuang Scholar Project.
文摘Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:We utilized gene expression datasets,ferroptosis upregulated genes and applied machine learning algorithms,including LASSO and SVM-RFE,to identify key ferroptosis-related genes in pancreatic cancer.Perform Gene Ontology,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology enrichment analysis,immune infiltration analysis and correlation analysis between immune infiltrating cells and characteristic genes on differentially expressed genes using the R software package.Retrieve potential traditional Chinese medicine for targeted ferroptosis gene therapy for pancreatic cancer through Coremine and Herb databases.Results:Seventeen feature genes were identified,with significant implications for immune cell infiltration in pancreatic cancer.The results of immune cell infiltration analysis showed that B cells naive,B cells memory,T cells regulatory,and M0 macrophages were significantly upregulated in pancreatic cancer patients;Mast cells resting were significantly downregulated.Chinese herbal medicines such as ginkgo,turmeric,ginseng,Codonopsis pilosula,Zedoary turmeric,deer tendons,senna leaves,Guanmu Tong,Huangqi,and Banzhilian are potential drugs for targeted ferroptosis gene therapy for pancreatic cancer.Conclusion:TIMP1 emerged as a key gene,with several TCM herbs predicted to modulate its expression,offering new avenues for treatment.
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by grants from the Key R&D Program of Shandong Province (2021ZLGX02)the National Science Foundation of China (81901934, 82325031)+1 种基金the National Key R&D Program of China (2020YFC1512700, 2020YFC1512705, 2020YFC1512703)the Clinical Research Center of Shandong University (2020SDUCRCC025)。
文摘The incidence of in-hospital cardiac arrest (IHCA) has increased over the past decade,with more than half occurring in intensive care units (ICUs).^([1])ICU cardiac arrest (ICU-CA)presents unique challenges,with worse outcomes than those in monitored wards,highlighting the need for early detection and intervention.^([2])Up to 80%of patients exhibit signs of deterioration hours before IHCA.^([3])Although early warning scores based on vital signs are useful,their eff ectiveness in ICUs is limited due to abnormal physiological parameters.^([4])Laboratory markers,such as sodium,potassium,and lactate,are predictive of poor outcomes,^([5])but static measurements may not capture the patient’s trajectory.Trends in laboratory indicators,such as variability and extremes,may offer better predictive value.^([6])This study aimed to evaluate ICU-CA predictive factors,with a focus on vital signs and trends of laboratory indicators.
文摘BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise forecasting of overall survival(OS)is of paramount importance for the clinical management of individuals afflicted with this malignancy.AIM To develop and validate a nomogram model that provides precise gastric cancer prevention and treatment guidance and more accurate survival outcome prediction for patients with gastric carcinoma.METHODS Data analysis was conducted on samples collected from hospitalized gastric cancer patients between 2018 and 2020.Least absolute shrinkage and selection operator,univariate,and multivariate Cox regression analyses were employed to identify independent prognostic factors.A nomogram model was developed to predict gastric cancer patient outcomes.The model's predictability and discriminative ability were evaluated via receiver operating characteristic curves.To evaluate the clinical utility of the model,Kaplan-Meier and decision curve analyses were performed.RESULTS A total of ten independent prognostic factors were identified,including body mass index,tumor-node-metastasis(TNM)stage,radiation,chemotherapy,surgery,albumin,globulin,neutrophil count,lactate dehydrogenase,and platelet-to-lymphocyte ratio.The area under the curve(AUC)values for the 1-,3-,and 5-year survival prediction in the training set were 0.843,0.850,and 0.821,respectively.The AUC values were 0.864,0.820,and 0.786 for the 1-,3-,and 5-year survival prediction in the validation set,respectively.The model exhibited strong discriminative ability,with both the time AUC and time C-index exceeding 0.75.Compared with TNM staging,the model demonstrated superior clinical utility.Ultimately,a nomogram was developed via a web-based interface.CONCLUSION This study established and validated a novel nomogram model for predicting the OS of gastric cancer patients,which demonstrated strong predictive ability.Based on these findings,this model can aid clinicians in implementing personalized interventions for patients with gastric cancer.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42075138 and 42375147)the Program on Key Basic Research Project of Jiangsu(Grant No.BE2023829)。
文摘Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
基金supported by the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(2021-I2M-1-010,2019-I2M-2-003,and 2017-I2M-1-004)the National High Level Hospital Clinical Research Funding(2022-GSPGG-1,2022-GSP-GG-2)+2 种基金the Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancers,CAMS(2019RU038)the National Key Research and Development Program of China(2018YFE0115300 and 2017YFC0211700)the National Natural Science Foundation of China(82030102,12126602).
文摘Objective The relationship between fish consumption and stroke is inconsistent,and it is uncertain whether this association varies across predicted stroke risks.Methods A cohort study comprising 95,800 participants from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China project was conducted.A standardized questionnaire was used to collect data on fish consumption.Participants were stratified into low-and moderate-to-high-risk categories based on their 10-year stroke risk prediction scores.Hazard ratios(HRs)and 95%confidence intervals(CIs)were estimated using Cox proportional hazard models and additive interaction by relative excess risk due to interaction(RERI),attributable proportion(AP),and synergy index(SI).Results During 703,869 person-years of follow-up,2,773 incident stroke events were identified.Higher fish consumption was associated with a lower risk of stroke,particularly among moderate-to-high-risk individuals(HR=0.53,95%CI:0.47-0.60)than among low-risk individuals(HR=0.64,95%CI:0.49-0.85).A significant additive interaction between fish consumption and predicted stroke risk was observed(RERI=4.08,95%CI:2.80-5.36;SI=1.64,95%CI:1.42-1.89;AP=0.36,95%CI:0.28-0.43).Conclusion Higher fish consumption was associated with a lower risk of stroke,and this beneficial association was more pronounced in individuals with moderate-to-high stroke risk.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42122034,42075043,42330609)the Second Tibetan Plateau Scientific Expedition and Research program(2019QZKK0103)+2 种基金Key Talent Project in Gansu and Central Guidance Fund for Local Science and Technology Development Projects in Gansu(No.24ZYQA031)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2021427)West Light Foundation of the Chinese Academy of Sciences(xbzg-zdsys-202215)。
文摘Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China.
基金supported by the Science and Technology Project of Jiangsu Coastal Power Infrastructure Intelligent Engineering Research Center“Photovoltaic Power Prediction System Driven by Deep Learning and Multi-Source Data Fusion”(F2024-5044).
文摘Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.
文摘BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes.
基金Supported by National Natural Science Foundation of China,No.81972947Academic Promotion Programme of Shandong First Medical University,No.2019LJ005.
文摘BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset DF and develop a robust prediction model for hospitalized patients with type 2 diabetes.METHODS We included 6301 hospitalized patients with type 2 diabetes from January 2016 to December 2021.A univariate Cox model and least absolute shrinkage and selection operator analyses were applied to select the appropriate predictors.Nonlinear associations between continuous variables and the risk of DF were explored using restricted cubic spline functions.The Cox model was further employed to evaluate the impact of risk factors on DF.The area under the curve(AUC)was measured to evaluate the accuracy of the prediction model.RESULTS Seventy-five diabetic inpatients experienced DF.The incidence density of DF was 4.5/1000 person-years.A long duration of diabetes,lower extremity arterial disease,lower serum albumin,fasting plasma glucose(FPG),and diabetic nephropathy were independently associated with DF.Among these risk factors,the serum albumin concentration was inversely associated with DF,with a hazard ratio(HR)and 95%confidence interval(CI)of 0.91(0.88-0.95)(P<0.001).Additionally,a U-shaped nonlinear relationship was observed between the FPG level and DF.After adjusting for other variables,the HRs and 95%CI for FPG<4.4 mmol/L and≥7.0 mmol/L were 3.99(1.55-10.25)(P=0.004)and 3.12(1.66-5.87)(P<0.001),respectively,which was greater than the mid-range level(4.4-6.9 mmol/L).The AUC for predicting DF over 3 years was 0.797.CONCLUSION FPG demonstrated a U-shaped relationship with DF.Serum albumin levels were negatively associated with DF.The prediction nomogram model of DF showed good discrimination ability using diabetes duration,lower extremity arterial disease,serum albumin,FPG,and diabetic nephropathy(Clinicaltrial.gov NCT05519163).
基金supported by the China Railway Corporation Science and Technology Research and Development Program(Grant Nos.K2020G035 and K2021G024)the National Natural Science Foundation of China(Grant No.52378411).
文摘The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To address the shortcomings of the current rockburst prediction models, which have a limited number of samples and rely on manual test results as the majority of their input features, this paper proposes rockburst prediction models based on multi-featured drilling parameters of rock drilling jumbo. Firstly, four original drilling parameters, namely hammer pressure (Ph), feed pressure (Pf), rotation pressure (Pr), and feed speed (VP), together with the rockburst grades, were collected from 1093 rockburst cases. Then, a feature expansion investigation was performed based on the four original drilling parameters to establish a drilling parameter feature system and a rockburst prediction database containing 42 features. Furthermore, rockburst prediction models based on multi-featured drilling parameters were developed using the extreme tree (ET) algorithm and Bayesian optimization. The models take drilling parameters as input parameters and rockburst grades as output parameters. The effects of Bayesian optimization and the number of drilling parameter features on the model performance were analyzed using the accuracy, precision, recall and F1 value of the prediction set as the model performance evaluation indices. The results show that the Bayesian optimized model with 42 drilling parameter features as inputs performs best, with an accuracy of 91.89%. Finally, the reliability of the models was validated through field tests.
基金Sichuan Province Science and Technology Department Key Research and Development Project,No.2023YFS0473.
文摘In this article,we discuss the study by Cheng et al,published in the World Journal of Gastroenterology,focusing on predictive methods for post-hepatectomy liver failure(PHLF).PHLF is a common and serious complication,and accurate prediction is critical for clinical management.The study examines the potential of ultrasound elastography and splenic size in predicting PHLF.Ultrasound elastography reflects liver functional reserve,while splenic size provides additional predictive value.By integrating these factors with serological markers,we developed a comprehensive prediction model that effectively stratifies patient risk and supports personalized clinical decisions.This approach offers new insights into predicting PHLF.These methods not only assist clinicians in identifying high-risk patients earlier but also provide scientific support for personalized treatment strategies.Future research will aim to validate the model's accuracy with larger sample sizes,further enhancing the clinical application of these non-invasive indicators.
基金Supported by the Innovation&Transfer Fund of Peking University Third Hospital(No.BYSYZHKC2021108).
文摘AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
文摘BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gastrectomy;however,post-surgical pancreatic fistula remain a serious issue.These fistulas can lead to abdominal infections,anastomotic leakage,increased costs,and pain;thus,early diagnosis and prevention are crucial for a better prognosis.Currently,C-reactive protein(CRP),procalcitonin(PCT),and total bilirubin(TBil)levels are used to predict post-operative infections and anastomotic leakage.However,their predictive value for pancreatic fistula after radical gastrectomy for gastric cancer remains unclear.The present study was conducted to determine their predictive value.AIM To determine the predictive value of CRP,PCT,and TBil levels for pancreatic fistula after gastric cancer surgery.METHODS In total,158 patients who underwent radical gastrectomy for gastric cancer at our hospital between January 2019 and January 2023 were included.The patients were assigned to a pancreatic fistula group or a non-pancreatic fistula group.Multivariate logistic analysis was conducted to assess the factors influencing development of a fistula.Receiver operating characteristic(ROC)curves were used to determine the predictive value of serum CRP,PCT,and TBil levels on day 1 postsurgery.RESULTS On day 1 post-surgery,the CRP,PCT,and TBil levels were significantly higher in the pancreatic fistula group than in the non-pancreatic fistula group(P<0.05).A higher fistula grade was associated with higher levels of the indices.Univariate analysis revealed significant differences in the presence of diabetes,hyperlipidemia,pancreatic injury,splenectomy,and the biomarker levels(P<0.05).Logistic multivariate analysis identified diabetes,hyperlipidemia,pancreatic injury,CRP level,and PCT level as independent risk factors.ROC curves yielded predictive values for CRP,PCT,and TBil levels,with the PCT level having the highest area under the curve(AUC)of 0.80[95%confidence interval(CI):0.72-0.90].Combined indicators improved the predictive value,with an AUC of 0.86(95%CI:0.78-0.93).CONCLUSION Elevated CRP,PCT,and TBil levels predict risk of pancreatic fistula post-gastrectomy for gastric cancer.