It is necessary to clarify the influence of thermal history on the conversion of aluminate species in sodium aluminate solution in order to optimize Bayer alumina production. The interconversion of various solution sp...It is necessary to clarify the influence of thermal history on the conversion of aluminate species in sodium aluminate solution in order to optimize Bayer alumina production. The interconversion of various solution species in the systems was investigated by measuring the infrared spectra of sodium aluminate solution with different compositions after separate heat treatment, dilution and concentration. The results show that increasing temperature or prolonging holding time favors the transformation of Al2O(OH)2- to Al—OH vibration(condensed Al O4 tetrahedral aluminate ion) at about 880 cm-1 and Al(OH)-4. A12O(OH)2-66 and Al—OH tetrahedral dimer ions convert rapidly to Al(OH)-4 during the dilution process; however, the back transformation of Al(OH)-4 to the Al—OH tetrahedral dimer ions can occur in diluted sodium aluminate solution. As for the concentration process, the transformation of Al(OH)-4 to A12O(OH)2-6 and Al—OH tetrahedral dimer ions can take place, while it is relatively difficult to transform to A12O(OH)2-6.展开更多
With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify ...With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression.展开更多
The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generatio...The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.展开更多
Geothermometer is one of the most useful methods to reconstruct the thermal history of sedimentary basins. This paper introduces the application of free radicals concentration of organic matter as a thermal indicator ...Geothermometer is one of the most useful methods to reconstruct the thermal history of sedimentary basins. This paper introduces the application of free radicals concentration of organic matter as a thermal indicator in the thermal history reconstruction of carbonate succession, based on anhydrous thermal simulation results of type I and H1 kerogen. A series of free radicals data are obtained under thermal simulation of different heating temperatures and times, and quantitative modds between free radical concentration (Ng) of organic matter and time-temperature index (TTI) for types I and type H1 kerogen are also obtained. This Ng.TTI relation was used to model the Ordovician thermal gradients of Well TZ12 in the Tarim Basin. The modeling result is corresponding to the results obtained by apatite fission track data and published data. This new method of thermal history reconstruction will be benefit to the hydrocarbon generation and accumulation study and resource assessment of carbonate succession.展开更多
The electrochemical behaviour, including free corrosion potential, free corrosion current density and polarization curve, of various thermal history zones on the weldment was measured in this paper. The weldment consi...The electrochemical behaviour, including free corrosion potential, free corrosion current density and polarization curve, of various thermal history zones on the weldment was measured in this paper. The weldment consisted of matrix, tempering zone. incomplete normalized zone, normalized zone, overtemperature zone, fusion line zone and weld metal zone. The electrochemical behaviour of the ferrite, pearlite and mixed structure in various zones have successfully measured. The results showed that there was a difference of free corrosion potential which is smaller than ca. 200mV between various zones and about 20-150mV potential difference between ferrite and pearlite in every zone. The free cormsion potential of fusion line zone was the most negative between various zones. The free corrosion potential of pearlite was some dozens mV more negative than ferrite. The corrosion course of various zones and of different phase structures on the weldment and their effect on corrosion attack of weldment were discussed.展开更多
The temperature dependence of the dynamic viscosity of Cu9In4 intermetallics melt has been investigated in five kinds of different heating and cooling processes with a torsional oscillation viscometer, It has been fou...The temperature dependence of the dynamic viscosity of Cu9In4 intermetallics melt has been investigated in five kinds of different heating and cooling processes with a torsional oscillation viscometer, It has been found that the viscosity of all Cu9In4 intermetallics decreases with increasing temperature in five kinds of different thermal processes. Thermal history has considerable effect on the viscosity. The viscosity in the cooling process with high superheating is greater than that in the cooling process with low superheating. The viscosity in the heating process is greater than that in the cooling process. No anomalous change in viscosity is measured in three kinds of cooling processes with low superheating. The anomalous change occurs at about 1050℃ in cooling with high superheating and at 800℃ in heating. Furthermore, the structural variation in different thermal processes has also been discussed on the basis of the change in viscosity and DSC analysis.展开更多
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
Spherical Si solar cells were fabricated based on multicrystalline Si spheres produced by a dropping method. The thermal history of Si spheres were calculated by numerical simulation. The simulation result reveals tha...Spherical Si solar cells were fabricated based on multicrystalline Si spheres produced by a dropping method. The thermal history of Si spheres were calculated by numerical simulation. The simulation result reveals that heat transfered by convection is greater than heat transfered by radiation. Considering the calculation results, Si spheres were dropped in the free-fall tower at low pressure state (0.2×105-0.5×105 Pa) to slow heat transfer by convection. After dash etching for 60 min, low pressure Si spheres have less etch pits, i.e., 80% for etch pit density and 8% for etch pit-area ratio compared to normal one. Furthermore, the conversion efficiency was improved from 6.57% (normal pressure spherical Si solar cell) to 9.56% (low one), which is 45% relative increase. The improvement is due to decrease of undercooling and increase of crystal growth duration. These results demonstrate that the dropping method at low pressure state is useful for fabricating high performance spherical Si solar cells.展开更多
In previous studies on plasma-particle interaction, as far as we know, the rf plasma flow and temperature fields are all simulated by the non-self-consistent one-dimensional electromagnetic (1-D EM) field model. In th...In previous studies on plasma-particle interaction, as far as we know, the rf plasma flow and temperature fields are all simulated by the non-self-consistent one-dimensional electromagnetic (1-D EM) field model. In the present paper, the complete self-consistent two-dimensional electromagnetic (2-D EM) field model in- corporating the axial Lorentz force component, which is neglected in the 1-D model, is firstly adopted to calculate the aluminium particle trajectory and thermal history in atmospheric rf Ar plasma with the particle evaporation effect included. The cru- cial effect of reverse flow within the coil region on the particle trajectory is discovered and the results show that the 2-D EM field model must be adopted instead of the 1-D model when the plasma-particle interaction is studied. The effect of carrier gas flux on the particle movement and heating are also studied, resulting in some useful conclusions for both plasma theory and application.展开更多
Based on interpretations of the apatite fission track analysis data for 10 outcrop samples and forward modeling of confined fission track length distributions, the thermal history of rocks in the Shiwandashan basin ...Based on interpretations of the apatite fission track analysis data for 10 outcrop samples and forward modeling of confined fission track length distributions, the thermal history of rocks in the Shiwandashan basin and its adjacent area, southern China, has been qualitatively and semi quantitatively studied. The results reflect several features of the thermal history. Firstly, all the samples have experienced temperatures higher than 60-70 ℃. Secondly, the time that the basement strata (T 1 b ) on the northwestern side of the Shiwandashan basin were uplifted and exhumed to the unannealed upper crust (with a paleogeotemperature of below 60-70 ℃) is much earlier than the basement rocks ( γ 1 5) on the southeastern side of the basin. Thirdly, the thermal history of samples from the basin can be divided into six stages, i.e., the fast burial and heating stage (220-145 Ma), the transient cooling stage (145-135 Ma), the burial and heating stage (135-70 Ma), the rapid cooling stage (70-50 Ma), the relatively stable stage (50-20 Ma) and another rapid cooling stage (20 Ma to present).展开更多
The Liwan Sag, with an area of 4 000 km-2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the d...The Liwan Sag, with an area of 4 000 km-2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the deepwater sags worldwide, we conducted the thermal modeling to investigate the tectono-thermal history of the Liwan Sag,which has been widely thought to be important to understand tectonic activities as well as hydrocarbon potential of a basin. Using the multi-stage finite stretching model, the tectonic subsidence history and the thermal history have been obtained for 12 artificial wells, which were constructed on basis of one seismic profile newly acquired in the study area. Two stages of rifting during the time periods of 49–33.9 Ma and 33.9–23 Ma can be recognized from the tectonic subsidence pattern, and there are two phases of heating processes corresponding to the rifting.The reconstructed average basal paleo-heat flow values at the end of the rifting events are -70.5 and -94.2 mW/m^2 respectively. Following the heating periods, the study area has undergone a persistent thermal attenuation phase since 23 Ma and the basal heat flow cooled down to -71.8–82.5 mW/m^2 at present.展开更多
Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has ...Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth.展开更多
Burgess Shale-type deposits provide a wealth of information on the early evolution of animals.Questions that are central to understanding the exceptional preservation of these biotas and the paleoenvironments they inh...Burgess Shale-type deposits provide a wealth of information on the early evolution of animals.Questions that are central to understanding the exceptional preservation of these biotas and the paleoenvironments they inhabited may be obscured by the post-depositional alteration due to metamorphism at depth and weathering near the Earth’s surface.Among over 50 Cambrian BST biotas,the Chengjiang and Qingjiang deposits are well known for their richness of soft-bodied taxa,fidelity of preservation,and Early Cambrian Age.While alteration via weathering has been well-investigated,the thermal maturity of the units bearing the two biotas has not yet been elucidated.Here we investigate peak metamorphic temperatures of the two deposits using two independent methods.Paleogeotemperature gradient analyses demonstrate that the most fossiliferous sections of the Chengjiang were buried at a maximum depth of∼8500 m in the Early Triassic,corresponding to∼300°C,while the type area of the Qingjiang biota was buried at a maximum depth of∼8700 m in the Early Jurassic,corresponding to∼240°C.Raman geothermometer analyses of fossil carbonaceous material demonstrate that peak temperatures varied across localities with different burial depth.The two productive sections of the Chengjiang biota were thermally altered at a peak temperature of approximately 300°C,and the main locality of the Qingjiang biota experienced a peak temperature of 238±22°C.These results from two independent methods are concordant.Among BST deposits for which thermal maturity has been documented,the Qingjiang biota is the least thermally mature,and therefore holds promise for enriching our understanding of BST deposits.展开更多
Grove Mountains (GRV) 99018 is a new eucrite (0.23 g), consisting mainly of pyroxene (50.5 vol%) and plagioclase (37.2 vol%) with minor silica minerals (7.0 Vol%) and opaque minerals (5.2 vol%). It was intensely shock...Grove Mountains (GRV) 99018 is a new eucrite (0.23 g), consisting mainly of pyroxene (50.5 vol%) and plagioclase (37.2 vol%) with minor silica minerals (7.0 Vol%) and opaque minerals (5.2 vol%). It was intensely shocked, leading to partial melting, formation of abundant tiny inclusions in pyroxenes and plagioclase, and heavy brecciation. Exsolution of most pyroxenes (1-3μm in width of the lamellae), recrystallization of the shpck-induced melt pockets and veins (5-20μm in size), and homogeneous compositions of pyroxenes of various occurrences suggest the intense thermal metamorphism of GRV 99018 in the asteroidal body Vesta. This new eucrite will bring additional constraints on the chemical composition and multi-stage thermal and shock history of Vesta.展开更多
The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evol...The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background, the thermal history in different tectonic units is characterized by the degree of annealing of samples, and the timing of major (uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous (69.8 Ma to 108.7 Ma), while the second is mainly from the Middle- Late Eocene to the late Miocene (10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the Bangong- Nujiang ocean closed. The second episode can be further divided into three periods, which are respectively 10.3 Ma, 22.6-26.1 Ma and 30.8-44.4 Ma. The late Oligocene-early Miocene (22.6-26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene (45.0-30.8 Ma). Subsequently, a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene (26.1-22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene (10.3 Ma). Thus, uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode shows that the uplift of the Qiangtang basin was caused by the strong compression after the collision of the Indian plate and Eurasian plate. On the whole, the new apatite fission-track data from the Qiangtang basin show that the Tibetan Plateau started to extrude and uplift during 45-30.8 Ma. The main period of uplift and formation of the Tibetan Plateau took place about 22.6-26.1 Ma, and uplift and extrusion continued until the late Miocene (10.3 Ma).展开更多
Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean a...Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean age and associated central ages mainly ranging from 108±7Ma to 35±4Ma.Their mean track lengths are 12.2-13.9 μm with a single peak. Zircon fission track age range from 78±3 Ma to 117±4 Ma. The results represented the two tectonic uplift events in the study area, namely the Cretaceous and Paleogene periods. According to thermal history modeling results, uplifting rates of two tectonic events is 0.31-0.1 mm/a and 0.07-0.04 mm/a respectively. Combined with field condition and study results, it is suggested that the Cretaceous tectonic uplift event was related to the closure ocean basin caused by Qaingtang-Lhasa collision, and the Paleogene tectonic uplift event was related to the south to thrust system caused by Indo-Asian collision.展开更多
This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexi...This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.展开更多
The thermal history of sedimentary basins is a key factor for hydrocarbon accumulation and resource assessment, and is critical in the exploration of lithospheric tectono-thermal evolution. In this paper, the Cenozoic...The thermal history of sedimentary basins is a key factor for hydrocarbon accumulation and resource assessment, and is critical in the exploration of lithospheric tectono-thermal evolution. In this paper, the Cenozoic thermal histories of nearly 200 wells and the Mesozoic thermal histories of 15 wells are modeled based on the vitrinite reflectance and apatite fission track data in Bohai Bay Basin, North China. The results show that the basin experienced Early Cretaceous and Paleogene heat flow peaks, which reveals two strong rift tectonic movements that occurred in the Cretaceous and the Paleogene in the basin, respectively. The thermal evolution history in Bohai Bay Basin can be divided into five stages including(1) the low and stable heat flow stage from the Triassic to the Jurassic, with the heat flow of 53 to 58 m W/m2;(2) the first heat flow peak from the Early Cretaceous to the middle of the Late Cretaceous, with a maximum heat flow of 81 to 87 m W/m2;(3) the first post-rift thermal subsidence stage from the middle of the Late Cretaceous to the Paleocene, with the heat flow of 65 to 74 m W/m2 at the end of the Cretaceous;(4) the second heat flow peak from the Eocene to the Oligocene, with a maximum heat flow of 81 to 88 m W/m2; and(5) the second thermal subsidence stage from the Neogene to present, with an average heat flow of 64 m W/m2.展开更多
The Bohai Bay Basin is a Mesozoic subsidence and Cenozoic rift basin in the North China Craton. Since the deposition of the Permo-Carboniferous hydrocarbon source rock, the basin has undergone many tectonic events. Th...The Bohai Bay Basin is a Mesozoic subsidence and Cenozoic rift basin in the North China Craton. Since the deposition of the Permo-Carboniferous hydrocarbon source rock, the basin has undergone many tectonic events. The source rocks have undergone non-uniform uplift, twisting, deep burying, and magmatism and that led to an interrupted or stepwise during the evolution of hydrocarbon source rocks. We have investigated the Permo-Carboniferous hydrocarbon source rocks history of burying, heating, and hydrocarbon generation, not only on the basis of tectonic disturbance and deeply buried but also with new studies on apatite fission track analysis, fluid inclusion measurements, and the application of the numerical simulation of EASY % Ro. The heating temperature of the source rocks continued to rise from the Indosinian to Himalayan stage and reached a maximum at the Late Himalayan. This led to the stepwise increases during organic maturation and multiple stages of hydrocarbon generation. The study delineated the tectonic stages, the intensity of hydrocarbon generation and spatial and temporal distribution of hydrocarbon generations. The hydrocarbon generation occurred during the Indosinian, Yanshanian, and particularly Late Himalayan. The hydrocarbon generation during the late Himalayan stage is the most important one for the Permo-Carboniferous source rocks of the Bohai Bay Basin in China.展开更多
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) therm...The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.展开更多
基金Project(51274243)supported by the National Natural Science Foundation of China
文摘It is necessary to clarify the influence of thermal history on the conversion of aluminate species in sodium aluminate solution in order to optimize Bayer alumina production. The interconversion of various solution species in the systems was investigated by measuring the infrared spectra of sodium aluminate solution with different compositions after separate heat treatment, dilution and concentration. The results show that increasing temperature or prolonging holding time favors the transformation of Al2O(OH)2- to Al—OH vibration(condensed Al O4 tetrahedral aluminate ion) at about 880 cm-1 and Al(OH)-4. A12O(OH)2-66 and Al—OH tetrahedral dimer ions convert rapidly to Al(OH)-4 during the dilution process; however, the back transformation of Al(OH)-4 to the Al—OH tetrahedral dimer ions can occur in diluted sodium aluminate solution. As for the concentration process, the transformation of Al(OH)-4 to A12O(OH)2-6 and Al—OH tetrahedral dimer ions can take place, while it is relatively difficult to transform to A12O(OH)2-6.
基金funded by the National Major Science and Technology Projects of China(Grant No.2016ZX05006-004)the Sichuan Youth Science and Technology Foundation(Grant No.2016JQ0043)the National Natural Science Foundation of China(Grant No.41972144)
文摘With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression.
文摘The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.
基金This work is funded by the National Natural Science Foundation of China (Grant 40472066)the National Major Fundamental Research and Development Project (Nos. 2005CB422102 and 1999043302).
文摘Geothermometer is one of the most useful methods to reconstruct the thermal history of sedimentary basins. This paper introduces the application of free radicals concentration of organic matter as a thermal indicator in the thermal history reconstruction of carbonate succession, based on anhydrous thermal simulation results of type I and H1 kerogen. A series of free radicals data are obtained under thermal simulation of different heating temperatures and times, and quantitative modds between free radical concentration (Ng) of organic matter and time-temperature index (TTI) for types I and type H1 kerogen are also obtained. This Ng.TTI relation was used to model the Ordovician thermal gradients of Well TZ12 in the Tarim Basin. The modeling result is corresponding to the results obtained by apatite fission track data and published data. This new method of thermal history reconstruction will be benefit to the hydrocarbon generation and accumulation study and resource assessment of carbonate succession.
文摘The electrochemical behaviour, including free corrosion potential, free corrosion current density and polarization curve, of various thermal history zones on the weldment was measured in this paper. The weldment consisted of matrix, tempering zone. incomplete normalized zone, normalized zone, overtemperature zone, fusion line zone and weld metal zone. The electrochemical behaviour of the ferrite, pearlite and mixed structure in various zones have successfully measured. The results showed that there was a difference of free corrosion potential which is smaller than ca. 200mV between various zones and about 20-150mV potential difference between ferrite and pearlite in every zone. The free cormsion potential of fusion line zone was the most negative between various zones. The free corrosion potential of pearlite was some dozens mV more negative than ferrite. The corrosion course of various zones and of different phase structures on the weldment and their effect on corrosion attack of weldment were discussed.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50231040) the Natural Science Foundation of Shandong Province, China (No. Z2001F02).
文摘The temperature dependence of the dynamic viscosity of Cu9In4 intermetallics melt has been investigated in five kinds of different heating and cooling processes with a torsional oscillation viscometer, It has been found that the viscosity of all Cu9In4 intermetallics decreases with increasing temperature in five kinds of different thermal processes. Thermal history has considerable effect on the viscosity. The viscosity in the cooling process with high superheating is greater than that in the cooling process with low superheating. The viscosity in the heating process is greater than that in the cooling process. No anomalous change in viscosity is measured in three kinds of cooling processes with low superheating. The anomalous change occurs at about 1050℃ in cooling with high superheating and at 800℃ in heating. Furthermore, the structural variation in different thermal processes has also been discussed on the basis of the change in viscosity and DSC analysis.
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.
基金This work was partly financially supported by NEDO.
文摘Spherical Si solar cells were fabricated based on multicrystalline Si spheres produced by a dropping method. The thermal history of Si spheres were calculated by numerical simulation. The simulation result reveals that heat transfered by convection is greater than heat transfered by radiation. Considering the calculation results, Si spheres were dropped in the free-fall tower at low pressure state (0.2×105-0.5×105 Pa) to slow heat transfer by convection. After dash etching for 60 min, low pressure Si spheres have less etch pits, i.e., 80% for etch pit density and 8% for etch pit-area ratio compared to normal one. Furthermore, the conversion efficiency was improved from 6.57% (normal pressure spherical Si solar cell) to 9.56% (low one), which is 45% relative increase. The improvement is due to decrease of undercooling and increase of crystal growth duration. These results demonstrate that the dropping method at low pressure state is useful for fabricating high performance spherical Si solar cells.
文摘In previous studies on plasma-particle interaction, as far as we know, the rf plasma flow and temperature fields are all simulated by the non-self-consistent one-dimensional electromagnetic (1-D EM) field model. In the present paper, the complete self-consistent two-dimensional electromagnetic (2-D EM) field model in- corporating the axial Lorentz force component, which is neglected in the 1-D model, is firstly adopted to calculate the aluminium particle trajectory and thermal history in atmospheric rf Ar plasma with the particle evaporation effect included. The cru- cial effect of reverse flow within the coil region on the particle trajectory is discovered and the results show that the 2-D EM field model must be adopted instead of the 1-D model when the plasma-particle interaction is studied. The effect of carrier gas flux on the particle movement and heating are also studied, resulting in some useful conclusions for both plasma theory and application.
文摘Based on interpretations of the apatite fission track analysis data for 10 outcrop samples and forward modeling of confined fission track length distributions, the thermal history of rocks in the Shiwandashan basin and its adjacent area, southern China, has been qualitatively and semi quantitatively studied. The results reflect several features of the thermal history. Firstly, all the samples have experienced temperatures higher than 60-70 ℃. Secondly, the time that the basement strata (T 1 b ) on the northwestern side of the Shiwandashan basin were uplifted and exhumed to the unannealed upper crust (with a paleogeotemperature of below 60-70 ℃) is much earlier than the basement rocks ( γ 1 5) on the southeastern side of the basin. Thirdly, the thermal history of samples from the basin can be divided into six stages, i.e., the fast burial and heating stage (220-145 Ma), the transient cooling stage (145-135 Ma), the burial and heating stage (135-70 Ma), the rapid cooling stage (70-50 Ma), the relatively stable stage (50-20 Ma) and another rapid cooling stage (20 Ma to present).
基金The Program of the Key Technologies for Petroleum Exploration in Deep Oceanic Areas under contract No.2011ZX05025-006-05the Chinese Postdoc Fund,No.58 General Fund,2015 under contract No.2015M582636the National Natural Science Foundation of China under contract No.41602251
文摘The Liwan Sag, with an area of 4 000 km-2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the deepwater sags worldwide, we conducted the thermal modeling to investigate the tectono-thermal history of the Liwan Sag,which has been widely thought to be important to understand tectonic activities as well as hydrocarbon potential of a basin. Using the multi-stage finite stretching model, the tectonic subsidence history and the thermal history have been obtained for 12 artificial wells, which were constructed on basis of one seismic profile newly acquired in the study area. Two stages of rifting during the time periods of 49–33.9 Ma and 33.9–23 Ma can be recognized from the tectonic subsidence pattern, and there are two phases of heating processes corresponding to the rifting.The reconstructed average basal paleo-heat flow values at the end of the rifting events are -70.5 and -94.2 mW/m^2 respectively. Following the heating periods, the study area has undergone a persistent thermal attenuation phase since 23 Ma and the basal heat flow cooled down to -71.8–82.5 mW/m^2 at present.
文摘Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth.
基金supported by the Natural Science Foundation of China(Nos.41930319,41621003,and EAR-1554897)the 111 Project(No.D17013)the Natural Science Basic Research Plan of Shaanxi Province(No.2022JC-DW5-01).
文摘Burgess Shale-type deposits provide a wealth of information on the early evolution of animals.Questions that are central to understanding the exceptional preservation of these biotas and the paleoenvironments they inhabited may be obscured by the post-depositional alteration due to metamorphism at depth and weathering near the Earth’s surface.Among over 50 Cambrian BST biotas,the Chengjiang and Qingjiang deposits are well known for their richness of soft-bodied taxa,fidelity of preservation,and Early Cambrian Age.While alteration via weathering has been well-investigated,the thermal maturity of the units bearing the two biotas has not yet been elucidated.Here we investigate peak metamorphic temperatures of the two deposits using two independent methods.Paleogeotemperature gradient analyses demonstrate that the most fossiliferous sections of the Chengjiang were buried at a maximum depth of∼8500 m in the Early Triassic,corresponding to∼300°C,while the type area of the Qingjiang biota was buried at a maximum depth of∼8700 m in the Early Jurassic,corresponding to∼240°C.Raman geothermometer analyses of fossil carbonaceous material demonstrate that peak temperatures varied across localities with different burial depth.The two productive sections of the Chengjiang biota were thermally altered at a peak temperature of approximately 300°C,and the main locality of the Qingjiang biota experienced a peak temperature of 238±22°C.These results from two independent methods are concordant.Among BST deposits for which thermal maturity has been documented,the Qingjiang biota is the least thermally mature,and therefore holds promise for enriching our understanding of BST deposits.
基金We are grateful to Drs Guan Yunbin and Xu Ping for their assistance in laboratories This study is supported by the National Natural Science Foundation of China(Grant No.40232026)the pilot project of knowledge-innovation program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-l23).
文摘Grove Mountains (GRV) 99018 is a new eucrite (0.23 g), consisting mainly of pyroxene (50.5 vol%) and plagioclase (37.2 vol%) with minor silica minerals (7.0 Vol%) and opaque minerals (5.2 vol%). It was intensely shocked, leading to partial melting, formation of abundant tiny inclusions in pyroxenes and plagioclase, and heavy brecciation. Exsolution of most pyroxenes (1-3μm in width of the lamellae), recrystallization of the shpck-induced melt pockets and veins (5-20μm in size), and homogeneous compositions of pyroxenes of various occurrences suggest the intense thermal metamorphism of GRV 99018 in the asteroidal body Vesta. This new eucrite will bring additional constraints on the chemical composition and multi-stage thermal and shock history of Vesta.
基金the National Natural Science Foundation of China (No.41372128)the State Key Laboratory of Continental Dynamics project in Northwest University (No.BJ08133-1)
文摘The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position, and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background, the thermal history in different tectonic units is characterized by the degree of annealing of samples, and the timing of major (uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous (69.8 Ma to 108.7 Ma), while the second is mainly from the Middle- Late Eocene to the late Miocene (10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the Bangong- Nujiang ocean closed. The second episode can be further divided into three periods, which are respectively 10.3 Ma, 22.6-26.1 Ma and 30.8-44.4 Ma. The late Oligocene-early Miocene (22.6-26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene (45.0-30.8 Ma). Subsequently, a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene (26.1-22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene (10.3 Ma). Thus, uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode shows that the uplift of the Qiangtang basin was caused by the strong compression after the collision of the Indian plate and Eurasian plate. On the whole, the new apatite fission-track data from the Qiangtang basin show that the Tibetan Plateau started to extrude and uplift during 45-30.8 Ma. The main period of uplift and formation of the Tibetan Plateau took place about 22.6-26.1 Ma, and uplift and extrusion continued until the late Miocene (10.3 Ma).
基金financially supported by the geological survey project of China Geological Survey(Grant No:1212011120185 and Grant No:1212011120182)
文摘Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean age and associated central ages mainly ranging from 108±7Ma to 35±4Ma.Their mean track lengths are 12.2-13.9 μm with a single peak. Zircon fission track age range from 78±3 Ma to 117±4 Ma. The results represented the two tectonic uplift events in the study area, namely the Cretaceous and Paleogene periods. According to thermal history modeling results, uplifting rates of two tectonic events is 0.31-0.1 mm/a and 0.07-0.04 mm/a respectively. Combined with field condition and study results, it is suggested that the Cretaceous tectonic uplift event was related to the closure ocean basin caused by Qaingtang-Lhasa collision, and the Paleogene tectonic uplift event was related to the south to thrust system caused by Indo-Asian collision.
文摘This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.
基金The National Natural Science Foundation of China (Nos. 41402219, 41125010, and 91114202)the Key State Science and Technology Project (No. 2011ZX05006) provided the financial support
文摘The thermal history of sedimentary basins is a key factor for hydrocarbon accumulation and resource assessment, and is critical in the exploration of lithospheric tectono-thermal evolution. In this paper, the Cenozoic thermal histories of nearly 200 wells and the Mesozoic thermal histories of 15 wells are modeled based on the vitrinite reflectance and apatite fission track data in Bohai Bay Basin, North China. The results show that the basin experienced Early Cretaceous and Paleogene heat flow peaks, which reveals two strong rift tectonic movements that occurred in the Cretaceous and the Paleogene in the basin, respectively. The thermal evolution history in Bohai Bay Basin can be divided into five stages including(1) the low and stable heat flow stage from the Triassic to the Jurassic, with the heat flow of 53 to 58 m W/m2;(2) the first heat flow peak from the Early Cretaceous to the middle of the Late Cretaceous, with a maximum heat flow of 81 to 87 m W/m2;(3) the first post-rift thermal subsidence stage from the middle of the Late Cretaceous to the Paleocene, with the heat flow of 65 to 74 m W/m2 at the end of the Cretaceous;(4) the second heat flow peak from the Eocene to the Oligocene, with a maximum heat flow of 81 to 88 m W/m2; and(5) the second thermal subsidence stage from the Neogene to present, with an average heat flow of 64 m W/m2.
基金support from the Natural Oil and Gas Stratagem Tap of China(No:XQ- 2004-03)the Emphases National Nature Science Foundation of China(No:40730422)
文摘The Bohai Bay Basin is a Mesozoic subsidence and Cenozoic rift basin in the North China Craton. Since the deposition of the Permo-Carboniferous hydrocarbon source rock, the basin has undergone many tectonic events. The source rocks have undergone non-uniform uplift, twisting, deep burying, and magmatism and that led to an interrupted or stepwise during the evolution of hydrocarbon source rocks. We have investigated the Permo-Carboniferous hydrocarbon source rocks history of burying, heating, and hydrocarbon generation, not only on the basis of tectonic disturbance and deeply buried but also with new studies on apatite fission track analysis, fluid inclusion measurements, and the application of the numerical simulation of EASY % Ro. The heating temperature of the source rocks continued to rise from the Indosinian to Himalayan stage and reached a maximum at the Late Himalayan. This led to the stepwise increases during organic maturation and multiple stages of hydrocarbon generation. The study delineated the tectonic stages, the intensity of hydrocarbon generation and spatial and temporal distribution of hydrocarbon generations. The hydrocarbon generation occurred during the Indosinian, Yanshanian, and particularly Late Himalayan. The hydrocarbon generation during the late Himalayan stage is the most important one for the Permo-Carboniferous source rocks of the Bohai Bay Basin in China.
基金supported by the National Natural Science Foundation of China (Grants No. 41572102, 41330315, 41102067, and 41172127)China Geological Survey project (Grant No. 121201011000161111-02)
文摘The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.