The functionality of wood has evolved with time to adapt to the emerging needs of society.Carbonized wood-based composites have attracted tremendous interest in the fields of aerospace,military power,electric power,an...The functionality of wood has evolved with time to adapt to the emerging needs of society.Carbonized wood-based composites have attracted tremendous interest in the fields of aerospace,military power,electric power,and system electronic devices,especially at high temperatures.Nevertheless,their electrical conductivity and thermal stability characteristics are still far from satisfactory.Herein,an innova-tive wood-derived carbon-carbon nanotubes-pyrolytic carbon composites(WDC-CNTs-PyCs)is successfully fabricated by chemical vapor deposition and chemical vapor infiltration.The combination of wood-derived carbon(WDC),carbon nanotubes(CNTs),and pyrolytic carbon(PyC)has never been reported in any previous work.We have innovatively introduced PyC into the WDC by chemical vapor infiltration.CNTs promote the continuous deposition of PyC to form dense structures.WDC-CNTs-PyC demonstrates significant compressive strength(85.4 MPa)and excellent electrical conductivity(632 S cm^(-1)).The weight loss rate of WDC-CNTs-PyC is 6%after heating at 500°C for 10 min in the air atmosphere.Furthermore,WDC-CNTs-PyC could resist oxyacetylene ablation above 2300°C for 15 s.With excellent electrical conductivity,outstanding thermal stability,and mechanical properties,WDC-CNTs-PyC opens up a surprising strategy for efficiently fabricating various high-performance electronic device composites that could be used in high-temperature fields.展开更多
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio...A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.展开更多
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat...The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.展开更多
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an...AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability.展开更多
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two dif...Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two different hole transport layers(HTL), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)(PEDOT), is comprehensively studied by applying a heat treatment at 85℃. The thermal stress causes the mutual ions migration of I, Pb and Ag through the device, which leads to the thermal decomposition of perovskite to form Pb I2. Interestingly, we find that I ions tend to migrate more towards electron transport layer(ETL) during heating, which is different with the observation of I ions migration towards HTL when bias pressure is applied. Moreover, the use of electrochemical deposited PEDOT as HTL significantly decreases the defect density of MAPb I3films as compared to PEDOT:PSS supported one. The electrochemical deposition PEDOT has good carrier mobility and low acidity, which avoids the drawbacks of aqueous PEDOT:PSS. Accordingly, the inverted PSCs based on PEDOT show superior durability than that with PEDOT:PSS. Our results reveal detailed degradation routes of a new kind of inverted PSCs which can contribute to the understanding of the failure of thermal-aged inverted PSCs.展开更多
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala...The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.展开更多
A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy ...A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries.展开更多
Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential dep...Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs.展开更多
With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stab...With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stability of OSCs is far from meeting the requirements of the application.Here,based on the layer-by-layer(LBL)process and by utilizing the dissolubility nature of solvent and materials,binary inverted OSCs(ITO/AZO/PM6/BTP-eC9/MoO3/Ag)with comb shape active morphology are fabricated.High efficiency of 17.13%and simultaneous superior thermal stability(with 93%of initial efficiency retained in~9:00 h under 85℃in N_(2))are demonstrated,showing superior stability to reference cells.The enhancements are attributed to the formed optimal comb shape of the active layer,which could provide a larger D/A interface,thus more charge carriers,render the active blend a more stable morphology,and protect the electrode by impeding ion's migration and corrosion.To the best of our knowledge,this is the best thermal stability of binary OSCs reported in the literature,especially when considering the high efficiency of over 17%.展开更多
Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the mag...Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the magnetic field.In this paper,we present a thermal stability design for the optical bench based on quasi-kinematic support by kinematic hinges on the MSS-1.The change in angles with the finite element method(FEM)model modified by thermal deformation test data is analyzed.The robustness of the structure is also investigated via the Monte Carlo method.Two main results are obtained.First,the peak-to-peak value(Vp-p)of the inter-boresight angle is at most 1.24″,and the Vp-p of the inter-boresight angle modification and analysis is no more than 3.13″,both of which are better than those on the Swarm satellites in orbit.Second,the 90°fibers of the carbon-reinforced arm need to be strictly controlled during the technological process.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) ...Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging ΔTx and GFA from parameter γ(=Tx/(Tg+Tl)),and it can,however,increase the activation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full crystallization experiment.The primary crystallization causes the decrease of hardness in these alloys,and as the crystallization continues,the hardness in all samples increases instead due to the precipitation of carbide and boride.The annealing temperature has an obvious effect on magnetic properties of these alloys,and the minor addition of Ni can effectively prevent the alloy annealed at high temperature to transform from paramagnetic to ferromagnetic state.展开更多
Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of ab...Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of about 24 nm and exhibits a(111) preferred orientation.The differential scanning calorimetry(DSC) analysis of nanocrystalline nickel demonstrates that the peak temperature of rapid grain growth is about 285.4 °C,and the peak temperature of grain growth towards equilibrium is around 431.5 °C.The isochronous annealing results reveal that abnormal grain growth behavior is not observed in nanocrystalline nickel without sulfur-containing.The thermal stability of the deposition was improved due to its initial microstructure of the as-deposited nickel and a certain amount of annealing nano-twins with low-energy,which reduces the driving force for grain growth.Consequently,the coating shows a low residual tensile stress of about 50 MPa and a high microhardness of HV 400 at the annealing temperature of 450 °C.展开更多
[Objective] The research aimed to reveal the functions of NAC and UBA domains in Peatl's thermal stability. [Method] Fusion expression vectors of Pearl protein and the 3 deletion mutants were constructed. The recombi...[Objective] The research aimed to reveal the functions of NAC and UBA domains in Peatl's thermal stability. [Method] Fusion expression vectors of Pearl protein and the 3 deletion mutants were constructed. The recombinant plasmids were induced by IPTG and the target proteins (Peatl, Peatl-△CD99,Peatl-△ND49 and Pearl-△ND108 )were expressed obtained by AKTA and its thermal stability was analyzed. [Result] The research found that 3 deletion mutants have good thermal stability like Pearl. [Conclusion] The research demonstrated that the coexistence of NAC or UBA domains is not necessary to thermal stability of Pearl protein , and they may give the protein particular stability structure seperately.展开更多
Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters...Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters: crystallization temperature (Tx), glass transition temperature (Tg) and thermal expansion (α). Besides, Judd-Ofelt theory is applied to analyzing absorption spectra. Intensity parameters -λ (λ=2, 4, 6), transition probabilities Aed, radiative lifetime τi, and branching ratios β of Er3+ transitions were obtained. Emission cross-section σemis of 4I13/2→4I15/2 transition of Er3+ was calculated according to the theory of McCumber. All of the parameters indicate that the thermal stability and optical properties of Er3+-doped TZNBG glasses are improved effectively.展开更多
A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission...A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material.展开更多
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition...The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.展开更多
A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, M...A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.展开更多
Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained...Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For comparison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.展开更多
基金supported by the under Grant No.51872232,the Key Scientific and Technological Innovation Research Team of Shaanxi Province(No.2022TD-31)the Key R&D Program of Shaanxi Province(No.2021ZDLGY14-04)+2 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates(Grand No.XN2022023)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.136-QP-2015).
文摘The functionality of wood has evolved with time to adapt to the emerging needs of society.Carbonized wood-based composites have attracted tremendous interest in the fields of aerospace,military power,electric power,and system electronic devices,especially at high temperatures.Nevertheless,their electrical conductivity and thermal stability characteristics are still far from satisfactory.Herein,an innova-tive wood-derived carbon-carbon nanotubes-pyrolytic carbon composites(WDC-CNTs-PyCs)is successfully fabricated by chemical vapor deposition and chemical vapor infiltration.The combination of wood-derived carbon(WDC),carbon nanotubes(CNTs),and pyrolytic carbon(PyC)has never been reported in any previous work.We have innovatively introduced PyC into the WDC by chemical vapor infiltration.CNTs promote the continuous deposition of PyC to form dense structures.WDC-CNTs-PyC demonstrates significant compressive strength(85.4 MPa)and excellent electrical conductivity(632 S cm^(-1)).The weight loss rate of WDC-CNTs-PyC is 6%after heating at 500°C for 10 min in the air atmosphere.Furthermore,WDC-CNTs-PyC could resist oxyacetylene ablation above 2300°C for 15 s.With excellent electrical conductivity,outstanding thermal stability,and mechanical properties,WDC-CNTs-PyC opens up a surprising strategy for efficiently fabricating various high-performance electronic device composites that could be used in high-temperature fields.
基金the China National Nature Science Foundation(Grant No.12102404)。
文摘A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.
基金financially supported by the National Natural Science Foundation of China (Grant No. 22275173)the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Grant No. 22kfhg10)。
文摘The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.
基金Funded by the National Natural Science Foundation of China(No.52002159)the Open Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.201611B12)the Open Fund of Science and Technology on Thermal Energy and Power Laboratory(No.TPL2018A03)。
文摘AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability.
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
基金financially supported by the National Natural Science Foundation of China (No. 61774169)the Natural Science Foundation of Hunan Province (No. 2022JJ30757)the Guangdong Science and Technology Planning Project (No.2018B030323010)。
文摘Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two different hole transport layers(HTL), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)(PEDOT), is comprehensively studied by applying a heat treatment at 85℃. The thermal stress causes the mutual ions migration of I, Pb and Ag through the device, which leads to the thermal decomposition of perovskite to form Pb I2. Interestingly, we find that I ions tend to migrate more towards electron transport layer(ETL) during heating, which is different with the observation of I ions migration towards HTL when bias pressure is applied. Moreover, the use of electrochemical deposited PEDOT as HTL significantly decreases the defect density of MAPb I3films as compared to PEDOT:PSS supported one. The electrochemical deposition PEDOT has good carrier mobility and low acidity, which avoids the drawbacks of aqueous PEDOT:PSS. Accordingly, the inverted PSCs based on PEDOT show superior durability than that with PEDOT:PSS. Our results reveal detailed degradation routes of a new kind of inverted PSCs which can contribute to the understanding of the failure of thermal-aged inverted PSCs.
基金funded by the National Natural Science Foundation of China (No.42261028,No.41961010,No.41801033)the "Light of West China" Program for the Organization Department of the Central Committee of the CPC, etc. (Zhang Mingli)+2 种基金the Chinese Academy of Sciences "Light of West China" Program for Western Young ScholarsIndustrial support program of higher education of Gansu province (2020C-40)Basic Research Innovation Group of Gansu province (20JR5RA478)
文摘The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.
基金supported by National Natural Science Foundation of China (No.U21A2047 and 51971076)China Postdoctoral Science Foundation (Grant No.2019M653599)Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110289)。
文摘A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries.
基金financially supported by Guangdong Major Project of Basic and Applied Basic Research (No.2019B030302007)National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOSTthe financial support by State Key Lab of Luminescent Materials and Devices,South China University of Technology (Skllmd-2022-03)。
文摘Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs.
基金support by Ningbo S&T Innovation 2025 Major Special Program,Ningbo,China,and Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices,Ningbo Institute of Materials Technology&Engineering,Chinese Academy of Sciencessupport by State Key Lab of Luminescent Materials and Devices,South China University of Technology(Skllmd-2022-03).
文摘With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stability of OSCs is far from meeting the requirements of the application.Here,based on the layer-by-layer(LBL)process and by utilizing the dissolubility nature of solvent and materials,binary inverted OSCs(ITO/AZO/PM6/BTP-eC9/MoO3/Ag)with comb shape active morphology are fabricated.High efficiency of 17.13%and simultaneous superior thermal stability(with 93%of initial efficiency retained in~9:00 h under 85℃in N_(2))are demonstrated,showing superior stability to reference cells.The enhancements are attributed to the formed optimal comb shape of the active layer,which could provide a larger D/A interface,thus more charge carriers,render the active blend a more stable morphology,and protect the electrode by impeding ion's migration and corrosion.To the best of our knowledge,this is the best thermal stability of binary OSCs reported in the literature,especially when considering the high efficiency of over 17%.
基金funded by the Macao Foundation,the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)which is funded by the China National Space Administrationthe opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao FDCT[Science and Technology Development Fund]No.119/2017/A3)。
文摘Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the magnetic field.In this paper,we present a thermal stability design for the optical bench based on quasi-kinematic support by kinematic hinges on the MSS-1.The change in angles with the finite element method(FEM)model modified by thermal deformation test data is analyzed.The robustness of the structure is also investigated via the Monte Carlo method.Two main results are obtained.First,the peak-to-peak value(Vp-p)of the inter-boresight angle is at most 1.24″,and the Vp-p of the inter-boresight angle modification and analysis is no more than 3.13″,both of which are better than those on the Swarm satellites in orbit.Second,the 90°fibers of the carbon-reinforced arm need to be strictly controlled during the technological process.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金Project(2012CB825700) supported by the National Basic Research Program of China
文摘Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging ΔTx and GFA from parameter γ(=Tx/(Tg+Tl)),and it can,however,increase the activation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full crystallization experiment.The primary crystallization causes the decrease of hardness in these alloys,and as the crystallization continues,the hardness in all samples increases instead due to the precipitation of carbide and boride.The annealing temperature has an obvious effect on magnetic properties of these alloys,and the minor addition of Ni can effectively prevent the alloy annealed at high temperature to transform from paramagnetic to ferromagnetic state.
基金Project(51005244)supported by the National Natural Science Foundation of ChinaProject(2011CB013405)supported by the Basic Research Development Program of China
文摘Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of about 24 nm and exhibits a(111) preferred orientation.The differential scanning calorimetry(DSC) analysis of nanocrystalline nickel demonstrates that the peak temperature of rapid grain growth is about 285.4 °C,and the peak temperature of grain growth towards equilibrium is around 431.5 °C.The isochronous annealing results reveal that abnormal grain growth behavior is not observed in nanocrystalline nickel without sulfur-containing.The thermal stability of the deposition was improved due to its initial microstructure of the as-deposited nickel and a certain amount of annealing nano-twins with low-energy,which reduces the driving force for grain growth.Consequently,the coating shows a low residual tensile stress of about 50 MPa and a high microhardness of HV 400 at the annealing temperature of 450 °C.
基金Supported by the“973”Program(2003CB114204)the Science and Technology Plan(D0706005040431)~~
文摘[Objective] The research aimed to reveal the functions of NAC and UBA domains in Peatl's thermal stability. [Method] Fusion expression vectors of Pearl protein and the 3 deletion mutants were constructed. The recombinant plasmids were induced by IPTG and the target proteins (Peatl, Peatl-△CD99,Peatl-△ND49 and Pearl-△ND108 )were expressed obtained by AKTA and its thermal stability was analyzed. [Result] The research found that 3 deletion mutants have good thermal stability like Pearl. [Conclusion] The research demonstrated that the coexistence of NAC or UBA domains is not necessary to thermal stability of Pearl protein , and they may give the protein particular stability structure seperately.
文摘Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters: crystallization temperature (Tx), glass transition temperature (Tg) and thermal expansion (α). Besides, Judd-Ofelt theory is applied to analyzing absorption spectra. Intensity parameters -λ (λ=2, 4, 6), transition probabilities Aed, radiative lifetime τi, and branching ratios β of Er3+ transitions were obtained. Emission cross-section σemis of 4I13/2→4I15/2 transition of Er3+ was calculated according to the theory of McCumber. All of the parameters indicate that the thermal stability and optical properties of Er3+-doped TZNBG glasses are improved effectively.
基金Financial support from the SUP Project ‘Improvement’ (Pnr. 192450) financed by the Research Council of Norway
文摘A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material.
基金financial supports from the National Natural Science Foundation of China(No.52071207)the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)+1 种基金the National Key Research and Development Program of China(No.2018YFB1106302)Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.
文摘A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.
基金The project was supported by Equipment Pre-research Key Laboratory Fund(No.6142020305)The authors would like to thank Shiyanjia Lab(www.shiyanjia.com)for the support of XPS test.
文摘Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For comparison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.