-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper ...-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper western tropical Pacific Ocean. The effects of the abmormal variation on the subtropical high over the Northwest Pacific Ocean are discussed. During the El Nino: (1) In the east part of the western tropical Pacific Ocean (the subsurface temperature data on the 165° E section are taken as an example), the water wanner than 29 C in the upper layer spread on the longitudinal section and positive temperature anormalies appeared in a large area of the sea surface. (2) In the west part of the western tropical Pacific Ocean (the subsurface temperature data on the 137°E section are representative ), the cross section occupied by the upper layer warmer water ( T >28 ℃ ) became shrunk, and the sea surface temperature showed negative amomalies. (3) The eastward flows in the upper layer of the 165°E section strengthened. (4)The northward flow volume of warm water from the origin area of Kuroshio, i. e. , the tropical oceanic area south of 18?0' N and from the west of 130?E to the Philippine coast, decreased. When those kinds of abnomal variation occurred, air divergence on the low level (1 000 hPa) over the Northwest Pacific Ocean was intensified, favourable to the strengthening of subtropical high over the Northwest Pacific Ocean.展开更多
Herein,double-perovskite Ba_(2)LaTaO_(6) Eu-doped orange-red phosphors were successfully synthesized using a high-temperature solid-phase method.The phosphor phase purity was investigated using X-ray diffraction and m...Herein,double-perovskite Ba_(2)LaTaO_(6) Eu-doped orange-red phosphors were successfully synthesized using a high-temperature solid-phase method.The phosphor phase purity was investigated using X-ray diffraction and microscopic morphology analyses.Their luminescence properties were investigated using absorption,emission,excitation,and temperature-dependent spectra.The transition mechanism mainly involves a magnetic-dipole transition with an energy transfer mode featuring multipole-multipole interactions,and concentration quenching is achieved via dipole-dipole interactions.In addition,the intensity of the temperature-dependent spectrum increases abnormally between 298 and 373 K,with the luminous intensity at 373 K increasing to 110%of that observed at room temperature.This phenomenon can be attributed to lattice defects in Ba_(2)LaTaO_(6):Eu^(3+),and the phosphor luminous intensity at473 K remains at 80.62%of that at room temperature.In addition,white-light-emitting diode devices based on this novel Ba_(2)LaTaO_(6):0.35Eu^(3+)phosphor were fabricated to evaluate the potential applications of the as-prepared phosphor.展开更多
Novel orange-red Sr_(2)GdSbO_(6):xEu^(3+)(x=0,0.05,0.1,0.2,0.3,0.4,0.5 and 0.6) phospho rs were successfully prepared by the traditional high-temperature solid-state method.The results of Rietveld refinement,energy di...Novel orange-red Sr_(2)GdSbO_(6):xEu^(3+)(x=0,0.05,0.1,0.2,0.3,0.4,0.5 and 0.6) phospho rs were successfully prepared by the traditional high-temperature solid-state method.The results of Rietveld refinement,energy dispersive spectroscopy(EDS) spectrum and elemental mapping demonstrate that Eu^(3+) successfully replaces the Gd^(3+) sites and distributes uniformly in the particles of phosphors.The luminescence properties of Sr_(2)GdSbO_(6):Eu_(3+)phosphors were investigated in detail.The emission spectra of the strongest emission peak is the ^(5)D_(0)→^(7)F_(1)(593 nm) transition,which can emit orange-red light under393 nm excitation.When the doping concentration of Eu3+ions is x=0.2,the luminescence intensity of the phosphors reaches the highest.The detailed mechanism of concentration quenching is attributed to dipole-dipole interaction.The thermal stability values of Sr_(2)GdSbO_(6):0.2Eu^(3+) phosphors are 87%,82% and114% under 393,467 and 527 nm excitations,respectively.The causes of the abnormal thermal quenching under 527 nm excitation were analyzed.Based on the abnormal thermal quenching under527 nm excitation,the optical thermometry properties of Sr_(2)GdSbO_(6):0.2Eu^(3+)phosphors were investigated by fluorescence intensity ratio(FIR) technique,and appreciable relative sensitivity was obtained.The results suggest that Sr_(2)GdSbO_(6):0.2Eu^(3+)phosphors can be potentially applied to w-LEDs and optical thermometers.展开更多
文摘-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper western tropical Pacific Ocean. The effects of the abmormal variation on the subtropical high over the Northwest Pacific Ocean are discussed. During the El Nino: (1) In the east part of the western tropical Pacific Ocean (the subsurface temperature data on the 165° E section are taken as an example), the water wanner than 29 C in the upper layer spread on the longitudinal section and positive temperature anormalies appeared in a large area of the sea surface. (2) In the west part of the western tropical Pacific Ocean (the subsurface temperature data on the 137°E section are representative ), the cross section occupied by the upper layer warmer water ( T >28 ℃ ) became shrunk, and the sea surface temperature showed negative amomalies. (3) The eastward flows in the upper layer of the 165°E section strengthened. (4)The northward flow volume of warm water from the origin area of Kuroshio, i. e. , the tropical oceanic area south of 18?0' N and from the west of 130?E to the Philippine coast, decreased. When those kinds of abnomal variation occurred, air divergence on the low level (1 000 hPa) over the Northwest Pacific Ocean was intensified, favourable to the strengthening of subtropical high over the Northwest Pacific Ocean.
基金Project supported by the National Natural Science Foundation of China (52262020)the Science and Technology Foundation of Guizhou Province (ZK[2021]yiban 328)。
文摘Herein,double-perovskite Ba_(2)LaTaO_(6) Eu-doped orange-red phosphors were successfully synthesized using a high-temperature solid-phase method.The phosphor phase purity was investigated using X-ray diffraction and microscopic morphology analyses.Their luminescence properties were investigated using absorption,emission,excitation,and temperature-dependent spectra.The transition mechanism mainly involves a magnetic-dipole transition with an energy transfer mode featuring multipole-multipole interactions,and concentration quenching is achieved via dipole-dipole interactions.In addition,the intensity of the temperature-dependent spectrum increases abnormally between 298 and 373 K,with the luminous intensity at 373 K increasing to 110%of that observed at room temperature.This phenomenon can be attributed to lattice defects in Ba_(2)LaTaO_(6):Eu^(3+),and the phosphor luminous intensity at473 K remains at 80.62%of that at room temperature.In addition,white-light-emitting diode devices based on this novel Ba_(2)LaTaO_(6):0.35Eu^(3+)phosphor were fabricated to evaluate the potential applications of the as-prepared phosphor.
基金supported by the National Natural Science Foundation of China (52262020)Guizhou Provincial Department of Education Science and Technology Uprooted Talents Project ([2022] 085)+1 种基金Guizhou Provincial Department of Education Rolling Support for Provincial Universities Scientific Research Platform Team Project ([2022] 036)the Science and Technology Foundation of Guizhou Province (ZK [2021] 328)。
文摘Novel orange-red Sr_(2)GdSbO_(6):xEu^(3+)(x=0,0.05,0.1,0.2,0.3,0.4,0.5 and 0.6) phospho rs were successfully prepared by the traditional high-temperature solid-state method.The results of Rietveld refinement,energy dispersive spectroscopy(EDS) spectrum and elemental mapping demonstrate that Eu^(3+) successfully replaces the Gd^(3+) sites and distributes uniformly in the particles of phosphors.The luminescence properties of Sr_(2)GdSbO_(6):Eu_(3+)phosphors were investigated in detail.The emission spectra of the strongest emission peak is the ^(5)D_(0)→^(7)F_(1)(593 nm) transition,which can emit orange-red light under393 nm excitation.When the doping concentration of Eu3+ions is x=0.2,the luminescence intensity of the phosphors reaches the highest.The detailed mechanism of concentration quenching is attributed to dipole-dipole interaction.The thermal stability values of Sr_(2)GdSbO_(6):0.2Eu^(3+) phosphors are 87%,82% and114% under 393,467 and 527 nm excitations,respectively.The causes of the abnormal thermal quenching under 527 nm excitation were analyzed.Based on the abnormal thermal quenching under527 nm excitation,the optical thermometry properties of Sr_(2)GdSbO_(6):0.2Eu^(3+)phosphors were investigated by fluorescence intensity ratio(FIR) technique,and appreciable relative sensitivity was obtained.The results suggest that Sr_(2)GdSbO_(6):0.2Eu^(3+)phosphors can be potentially applied to w-LEDs and optical thermometers.