期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assessment of hydrocarbon generation potential and thermal maturity of the deep offshore Lamu Basin, Kenya
1
作者 G.A.Osukuku O.O.Osinowo +3 位作者 W.A.Sonibare E.W.Makhanu S.Rono A.Omar 《Energy Geoscience》 2023年第3期48-62,共15页
In this study, the secondary well data for Cretaceous to Miocene cutting samples in four deep offshore exploration wells, i.e., Pomboo-1 in the north, Kubwa-1 in the central, Simba-1 and Kiboko-1 in the south of the d... In this study, the secondary well data for Cretaceous to Miocene cutting samples in four deep offshore exploration wells, i.e., Pomboo-1 in the north, Kubwa-1 in the central, Simba-1 and Kiboko-1 in the south of the deep offshore Lamu Basin were assessed for identifying source rock presence and examining thermal maturity of the source rocks. The 2D basin modelling was used to analyse the bulk gas transformation in the basin. Total organic carbon (TOC) content values for the wells range from 0.09 wt % to 2.23 wt % with an average of 0.78 wt %. The average organic richness is higher in the Upper Cretaceous (0.83 wt %) than in the Palaeogene (0.65 wt %), Lower Cretaceous (0.28 wt %) and Upper Jurassic (0.30 wt %). The S_(1) averages for the Upper Cretaceous are 3.76 mg HC/g rock in Pomboo-1 and 0.31mg HC/g rock in Kubwa-1. The S_(2) averages for the Upper Cretaceous are 5.00 mg HC/g rock in Pomboo-1 and 0.72 mg HC/g rock in Kubwa-1. Hydrogen index (HI) values vary between 4 and 512 mg HC/g TOC with an average of 157.09 mg HC/g TOC. Organic matters were identified as mixed types of Ⅱ-Ⅲ (oil and gas prone) and Ⅲ-Ⅳ (gas prone) kerogen in the potential source rocks. The HI and S_(2) yield values are exceptionally high for the observed TOC values in Pomboo-1. The vitrinite reflectance and Tmax values of deep offshore Lamu Basin are in the ranges of 0.38%–0.72% and 360–441 ℃, respectively. It suggests the existence of both immature and mature source rocks. Vitrinite reflectance maturity favours near coastal region in the Upper Cretaceous. These results explain why Pomboo-1, Kubwa-1, Simba-1 and Kiboko-1 wells were dry. The temperatures are still cool for hydrocarbon generation in deep offshore. The critical risk for deep offshore Lamu Basin is charge, primarily source presence, and a lack of definitive evidence of a deep-water marine source rock being present. The four wells penetrate good quality reservoir and seal rocks, but source rock presence and maturity remain the critical play risk in the deep offshore Lamu Basin. 展开更多
关键词 Rock-eval pyrolysis Vitrinite reflectance Kerogen type thermal alteration index Petroleum geochenisty 2D basin modelling
下载PDF
Autunite-Group Minerals and Their Paragenesis from the Sheared Granite of Gabal El Sela, South Eastern Desert, Egypt 被引量:1
2
作者 Ehab K. Abu Zeid 《Open Journal of Geology》 2020年第6期703-725,共23页
G. El Sela is located in the Southern Eastern Desert of Egypt cropping as two parts, occupied by monzogranites that were categorized as biotite granite, muscovite granite and two mica granites. The northern part is mo... G. El Sela is located in the Southern Eastern Desert of Egypt cropping as two parts, occupied by monzogranites that were categorized as biotite granite, muscovite granite and two mica granites. The northern part is more significant according its high concentrations of uranium that controlled by complicated structure regime;faulting, infrastructures and shearing are the most common structural criteria of this part. The Egyptian Nuclear Materials Authority (NMA) mined this part to produce the uranium ore. The previous mineralogical studies indicated that this granite was dominated by primary uranium minerals (pitchblende and coffinite) and secondary minerals belong to the autunite group (autunite, metautunite, phurcalite) in addition to uranophane. In the present work, petrographic and mineralogical studies are applied for the granites using the polarized and stereo microscopes and followed by electron microscope and XRD. The result of the microscopic examinations revealed the tectonic regime controlling the radioactivity and recognized the sodic autunite (meta-natroautunite) beside the pre-mentioned autunite group minerals completing the paragenetic sequrnce of these minerals. In this study, it is concluded that the sheared biotite granite is monzogranite originated during the episode of the continental plate collision (syncollision). The study finished to presence of two main types of the alteration corresponding to the two high levels of radioactivity (moderate and anomalous). The first is the thermal alteration (saussiritization, sericitization, kaolinization, silicification and hematization) and the second is the chemical transformation (oxidation, dehydration, ion substitutions and confusion) responsible for formation of the secondary uranium minerals. The temperature needed for the thermal alteration is sourced by the hydrothermal solutions, while the temperature needed for the uranium minerals transformation may be generated during the episode of the continental plate collision (syncollision). Paragenesis of these minerals indicates that they represent a series of uranyl phosphate minerals (autunite group) with paragenetic sequence starting by autunite (calcic uranyl phosphate) and ends by meta-natroautunite (sodic uranyl phosphate). An advanced process of dehydration accompanies the process of mineral transformation from autunite to meta-natroautunite leading to formation of the anhydrous uranyl mineral (phurcalite) formed by oxidation and dehydration of autunite. Meta-autunite is recorded as a transitional mineral composed of sodic-calcic uranyl phosphate. Uranophane is created by thermal confusion of autunite with the silica. 展开更多
关键词 Autunite-Group PARAGENESIS thermal alteration Chemical alteration CONFUSION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部