Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements af...Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimat...Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimate the effective volume of material thermally affected during this localized measurement, simulations, using finite element method were used. Several parameters and conditions were considered. So, thermal conductivity was found to be the driving physical parameter in thermal exchanges. Indeed, the evolution of the heat affected zone (HAZ) versus thermal conductivity can well be described by a linear interpolation. Therefore it is possible to estimate the HAZ before experimental measurements. This result is an important progress especially for accurate interphase characterization in heterogeneous materials.展开更多
Multi-frictional disks are employed to transmit the torque in speeding wetclutch, and the oil thickness within frictional disks could be adjusted for practical outputspeeding. As oil combined with alpha-hydrocarbon or...Multi-frictional disks are employed to transmit the torque in speeding wetclutch, and the oil thickness within frictional disks could be adjusted for practical outputspeeding. As oil combined with alpha-hydrocarbon or polyester is getting widely used as lubricantand the speeding wet clutch works within hydrodynamic lubrication, mixture lubrication, boundarylubrication and contact situation, established the thermal analysis model for investigating thebehavior of frictional disks in speeding wet clutch, which covers the power-law fluid model,Patir-Cheng average flow model, GT asperity contact model, oil film inertia and heat effects, meanenergy equation, and heat conduction equation. The formulas in the model are deduced. The numeralcalculation and analysis for hydrodynamic lubrication and mixture lubrication are executed.Relationships and variations among transmitting torque, mean push pressure, output speed, and loadare presented. Thermal effect should be considered during the hydrodynamic lubrication and largertransmitting torque makes earlier entrance to mixture lubrication.展开更多
Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the ...Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the coal oxidation were investigated at different heating rates. The TG-DSC data show that the impact of Vitamin C on coal oxidation process can be directly evaluated using ignition temperature and critical temperature. Comparison with the effect of water on coal oxidation shows that Vitamin C is more efficient than water. However, the blank experiment conducted with inert a-Al2O3 also suggests that Vitamin C can decompose at about 200 ℃, which limits the usage of Vitamin C on inhibiting coal oxidation.展开更多
With the scale of integration and operation speed of modern ICs increasing,a series of thermo-related problems arise.Hot spots,which are due to the uneven distribution of heat,invalidate some functions of the chip.An ...With the scale of integration and operation speed of modern ICs increasing,a series of thermo-related problems arise.Hot spots,which are due to the uneven distribution of heat,invalidate some functions of the chip.An algorithm is presented to calculate the profile.With the boundary element method,3D problems are converted into 2D ones,so the temperatures of both the chip surface and inner points can be calculated quickly.This algorithm can be used to evaluate the thermal quality of a definite chip.展开更多
Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure ...Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure in a standard cup does not ensure that the microstructure is correct in real parts which may solidify at very different cooling rates.For this study,alloy A356 with different metal quality in terms of modification and grain refinement was tested.Different cooling rates were obtained by using cylindrical test samples with various diameters cast in sand and metallic moulds.The correlation between microstructure features such as grain size,modification rate and secondary dendrite arm spacing (SDAS) measured in the standard thermal analysis cup with those obtained in the cylindrical test parts has been investigated.Thus,knowing the thermal modulus and the mould type it is possible to establish the required grain size and modification rate in the standard cup in order to get a desired structure in a real part.Corrective actions can then be taken in order to improve the metallurgical quality before casting the part.展开更多
Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) eff...Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) efficient and accurate reliability testing is required to realize the potential lifetimes of 105 h. Transient thermal analysis is a standard method to determine the transient thermal impedance of semiconductor devices, e.g. power electronics and LEDs. The temperature of the semiconductor junctions is assessed by time-resolved measurement of their forward voltage (Vf). The thermal path in the IC package is resolved by the transient technique in the time domain. This enables analyzing the structural integrity of the semiconductor package. However, to evaluate thermal resistance, one must also measure the dissipated energy of the device (i.e., the thermal load) and the k-factor. This is time consuming, and measurement errors reduce the accuracy. To overcome these limitations, an innovative approach, the relative thermal resistance method, was developed to reduce the measurement effort, increase accuracy and enable automatic data evaluation. This new way of evaluating data simplifies the thermal transient analysis by eliminating measurement of the k-factor and thermal load, i.e. measurement of the lumen flux for LEDs, by normalizing the transient Vf data. This is especially advantageous for reliability testing where changes in the thermal path, like cracks and delaminations, can be determined without measuring the k-factor and thermal load. Different failure modes can be separated in the time domain. The sensitivity of the method is demonstrated by its application to high- power white InGaN LEDs. For detailed analysis and identification of the failure mode of the LED packages, the transient signals are simulated by time-resolved finite element (FE) simulations. Using the new approach, the transient thermal analysis is enhanced to a powerful tool for reliability investigation of semiconductor packages in accelerated lifetime tests and for inline inspection. This enables automatic data analysis of the transient thermal data required for processing a large amount of data in production and reliability testing. Based on the method, the integrity of LED packages can be tested by inline, outgoing inspection and the lifetime prediction of the products is improved.展开更多
A dinuclear complex Cd2(dnba)4(pyridine)4 (dnba = 3,5-dinitrobenzoate) has been synthesized by hydrothermal method and characterized by X-ray single-crystal diffraction, elemental analysis, FT-IR spectroscopy, D...A dinuclear complex Cd2(dnba)4(pyridine)4 (dnba = 3,5-dinitrobenzoate) has been synthesized by hydrothermal method and characterized by X-ray single-crystal diffraction, elemental analysis, FT-IR spectroscopy, DSC and TG-DTG techniques. The complex with empirical formula C48H32Cd2NI2024 (Mr = 692.83) crystallizes in monoclinic, space group P21/n with a - 12.0344(14), b = 10.5752(13), c = 21.578(3) A, β = 104.150(2)°, V = 2662.8(6) A^3, Z = 2, D, = 1.728 g/cm^3,μ(MoKa) = 0.897 mm^-1, F(000) = 1384, S = 1.016 and (△/σ)max = 0.001. R = 0.0638 and wR = 0.0737 for all data; the final R = 0.0337 and wR = 0.0644. In this complex, four carboxylates are bidentate-or chelate-coordinated with the Cd(Ⅱ) centers to give the dinuclear structure. The other coordination positions of Cd(Ⅱ) are occupied by the lone pair electrons from N of four pyridines. Thermal analyses DSC and TG-DTG have been used to determine the thermal decomposition mechanism of the title complex.展开更多
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For...The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For the solidification pattern,some specific cooling curves characteristics,such as the degree of undercooling at the beginning of eutectic solidif ication and at the end of solidifi cation,as well as the recalescence level,are identif ied to be more influenced by the inoculation technique.The degree of eutectic undercooling of the electrically melted base iron having 0.025% S,0.003% Al and 3.5% Ce is excessively high(39-40℃),generating a relatively high need for inoculation.Under these conditions,the in-mould inoculation has a more signif icant effect compared to ladle inoculation,especially at lower inoculant usage(less than 0.20 wt.%).Generally,the eff iciency of 0.05wt.% -0.15wt.% of alloy for in-mould inoculation is comparable to,or better than,that of 0.15wt.% -0.25wt.% addition in ladle inoculation procedures.In order to secure stable and controlled processes,representative thermal analysis parameters could be used,especially in thin wall grey iron castings production.展开更多
In general, during the production of compacted graphite iron (CGI), the active residual magnesium reduces and the effect of inoculation fades after magnesium treatment. In this paper, characteristics of the thermal an...In general, during the production of compacted graphite iron (CGI), the active residual magnesium reduces and the effect of inoculation fades after magnesium treatment. In this paper, characteristics of the thermal analysis curve of CGI are compared with those of ductile iron and grey cast iron. The fading effect on the compacted graphite percentage and thermal analysis curve were also studied. Results indicate that the undercooling of CGI is as low as that of ductile iron, but CGI shows evident recalescence. In fading process, the magnesium element acts with oxygen. For a decrease in magnesium content, both the compacted graphite percentage and the austenitic liquidus temperature increase. The temperature of eutectic undercooling (TEU) decreases before the flake graphite appears. After that, TEU increases quickly, up to as high as 20℃, and then gradually decreases. The evolution of recalescence degree is opposite to that of TEU.展开更多
In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductiv...In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.展开更多
The temperature fields and the weld pool geometries for laser + GMAW-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed ...The temperature fields and the weld pool geometries for laser + GMAW-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed heat source models, respectively. The calculated weld cross-sectious of the three types of welding processes agree well with their respective measured results. Through comparison, it is found that the temperature distribution of laser+GMAW-P hybrid welding possesses the advantages of those in both laser and GMAW-P welding processes so that the improvement of welding productivity and weld quality are ensured.展开更多
The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This p...The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.展开更多
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th...An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.展开更多
Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal crist...Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal cristobalite and tridymite, is a major component of POS. DTA and FT-IR indicated that there were many hydroxyl groups and acid sites on the surface of amorphous SiO2 materials. FE-SEM analysis exhibited amorphous SiO2 particles(opal-A) covering over stacking sequences microcrystal cristobalite and tridymite. Meanwhile, MIP analysis demonstrated that porosity and pore size distribution of POS remained uniform below 600 ℃. Because stable porous microstructure is a key factor in improving photocatalyst activity, POS is suited to preparing highly active supported.展开更多
基金the financial support of the State Key Laboratory of Engine Reliability(skler-202105)。
文摘Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
文摘Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimate the effective volume of material thermally affected during this localized measurement, simulations, using finite element method were used. Several parameters and conditions were considered. So, thermal conductivity was found to be the driving physical parameter in thermal exchanges. Indeed, the evolution of the heat affected zone (HAZ) versus thermal conductivity can well be described by a linear interpolation. Therefore it is possible to estimate the HAZ before experimental measurements. This result is an important progress especially for accurate interphase characterization in heterogeneous materials.
文摘Multi-frictional disks are employed to transmit the torque in speeding wetclutch, and the oil thickness within frictional disks could be adjusted for practical outputspeeding. As oil combined with alpha-hydrocarbon or polyester is getting widely used as lubricantand the speeding wet clutch works within hydrodynamic lubrication, mixture lubrication, boundarylubrication and contact situation, established the thermal analysis model for investigating thebehavior of frictional disks in speeding wet clutch, which covers the power-law fluid model,Patir-Cheng average flow model, GT asperity contact model, oil film inertia and heat effects, meanenergy equation, and heat conduction equation. The formulas in the model are deduced. The numeralcalculation and analysis for hydrodynamic lubrication and mixture lubrication are executed.Relationships and variations among transmitting torque, mean push pressure, output speed, and loadare presented. Thermal effect should be considered during the hydrodynamic lubrication and largertransmitting torque makes earlier entrance to mixture lubrication.
基金Funded by the National Natural Science Foundation of China(No.51134020)the Shenhua Group Corporation Limited(No.U1361213)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Natural Science Foundation of Jiangsu(No.BK20141132)the Fundamental Research Funds for the Central Universities(No.2014QNB01)
文摘Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the coal oxidation were investigated at different heating rates. The TG-DSC data show that the impact of Vitamin C on coal oxidation process can be directly evaluated using ignition temperature and critical temperature. Comparison with the effect of water on coal oxidation shows that Vitamin C is more efficient than water. However, the blank experiment conducted with inert a-Al2O3 also suggests that Vitamin C can decompose at about 200 ℃, which limits the usage of Vitamin C on inhibiting coal oxidation.
文摘With the scale of integration and operation speed of modern ICs increasing,a series of thermo-related problems arise.Hot spots,which are due to the uneven distribution of heat,invalidate some functions of the chip.An algorithm is presented to calculate the profile.With the boundary element method,3D problems are converted into 2D ones,so the temperatures of both the chip surface and inner points can be calculated quickly.This algorithm can be used to evaluate the thermal quality of a definite chip.
基金supported by the Basque Government (Project:Manufacturing 0.0 Etortek 2008)Spanish Government (Singular Strategic Project,PSE integrAuto)
文摘Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure in a standard cup does not ensure that the microstructure is correct in real parts which may solidify at very different cooling rates.For this study,alloy A356 with different metal quality in terms of modification and grain refinement was tested.Different cooling rates were obtained by using cylindrical test samples with various diameters cast in sand and metallic moulds.The correlation between microstructure features such as grain size,modification rate and secondary dendrite arm spacing (SDAS) measured in the standard thermal analysis cup with those obtained in the cylindrical test parts has been investigated.Thus,knowing the thermal modulus and the mould type it is possible to establish the required grain size and modification rate in the standard cup in order to get a desired structure in a real part.Corrective actions can then be taken in order to improve the metallurgical quality before casting the part.
文摘Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) efficient and accurate reliability testing is required to realize the potential lifetimes of 105 h. Transient thermal analysis is a standard method to determine the transient thermal impedance of semiconductor devices, e.g. power electronics and LEDs. The temperature of the semiconductor junctions is assessed by time-resolved measurement of their forward voltage (Vf). The thermal path in the IC package is resolved by the transient technique in the time domain. This enables analyzing the structural integrity of the semiconductor package. However, to evaluate thermal resistance, one must also measure the dissipated energy of the device (i.e., the thermal load) and the k-factor. This is time consuming, and measurement errors reduce the accuracy. To overcome these limitations, an innovative approach, the relative thermal resistance method, was developed to reduce the measurement effort, increase accuracy and enable automatic data evaluation. This new way of evaluating data simplifies the thermal transient analysis by eliminating measurement of the k-factor and thermal load, i.e. measurement of the lumen flux for LEDs, by normalizing the transient Vf data. This is especially advantageous for reliability testing where changes in the thermal path, like cracks and delaminations, can be determined without measuring the k-factor and thermal load. Different failure modes can be separated in the time domain. The sensitivity of the method is demonstrated by its application to high- power white InGaN LEDs. For detailed analysis and identification of the failure mode of the LED packages, the transient signals are simulated by time-resolved finite element (FE) simulations. Using the new approach, the transient thermal analysis is enhanced to a powerful tool for reliability investigation of semiconductor packages in accelerated lifetime tests and for inline inspection. This enables automatic data analysis of the transient thermal data required for processing a large amount of data in production and reliability testing. Based on the method, the integrity of LED packages can be tested by inline, outgoing inspection and the lifetime prediction of the products is improved.
基金The project was supported by the National Natural Science Foundation of China (20471008) and the Fundamental Research Foundation of Beijing Institute of Technology (BIT-UBF-200302B01&BIT-UBF-200502B4221)
文摘A dinuclear complex Cd2(dnba)4(pyridine)4 (dnba = 3,5-dinitrobenzoate) has been synthesized by hydrothermal method and characterized by X-ray single-crystal diffraction, elemental analysis, FT-IR spectroscopy, DSC and TG-DTG techniques. The complex with empirical formula C48H32Cd2NI2024 (Mr = 692.83) crystallizes in monoclinic, space group P21/n with a - 12.0344(14), b = 10.5752(13), c = 21.578(3) A, β = 104.150(2)°, V = 2662.8(6) A^3, Z = 2, D, = 1.728 g/cm^3,μ(MoKa) = 0.897 mm^-1, F(000) = 1384, S = 1.016 and (△/σ)max = 0.001. R = 0.0638 and wR = 0.0737 for all data; the final R = 0.0337 and wR = 0.0644. In this complex, four carboxylates are bidentate-or chelate-coordinated with the Cd(Ⅱ) centers to give the dinuclear structure. The other coordination positions of Cd(Ⅱ) are occupied by the lone pair electrons from N of four pyridines. Thermal analyses DSC and TG-DTG have been used to determine the thermal decomposition mechanism of the title complex.
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.
文摘The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For the solidification pattern,some specific cooling curves characteristics,such as the degree of undercooling at the beginning of eutectic solidif ication and at the end of solidifi cation,as well as the recalescence level,are identif ied to be more influenced by the inoculation technique.The degree of eutectic undercooling of the electrically melted base iron having 0.025% S,0.003% Al and 3.5% Ce is excessively high(39-40℃),generating a relatively high need for inoculation.Under these conditions,the in-mould inoculation has a more signif icant effect compared to ladle inoculation,especially at lower inoculant usage(less than 0.20 wt.%).Generally,the eff iciency of 0.05wt.% -0.15wt.% of alloy for in-mould inoculation is comparable to,or better than,that of 0.15wt.% -0.25wt.% addition in ladle inoculation procedures.In order to secure stable and controlled processes,representative thermal analysis parameters could be used,especially in thin wall grey iron castings production.
文摘In general, during the production of compacted graphite iron (CGI), the active residual magnesium reduces and the effect of inoculation fades after magnesium treatment. In this paper, characteristics of the thermal analysis curve of CGI are compared with those of ductile iron and grey cast iron. The fading effect on the compacted graphite percentage and thermal analysis curve were also studied. Results indicate that the undercooling of CGI is as low as that of ductile iron, but CGI shows evident recalescence. In fading process, the magnesium element acts with oxygen. For a decrease in magnesium content, both the compacted graphite percentage and the austenitic liquidus temperature increase. The temperature of eutectic undercooling (TEU) decreases before the flake graphite appears. After that, TEU increases quickly, up to as high as 20℃, and then gradually decreases. The evolution of recalescence degree is opposite to that of TEU.
基金Project supported by the Advance Research Foundation of China(Grant No.9140Axxx501)the National Defense Advance Research Project,China(Grant No.3151xxxx301)+1 种基金the Frontier Innovation Program,China(Grant No.48xx4)the 111 Project,China(Grant No.B12026)
文摘In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.
基金The authors are grateful to the financial support for this research from the National Key Technologies R&D program of China under Grant No. 2006BAF04B10, and The key project of Natural Science Foundation of Heilongjiang Province under Grant No. ZJG0601.
文摘The temperature fields and the weld pool geometries for laser + GMAW-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed heat source models, respectively. The calculated weld cross-sectious of the three types of welding processes agree well with their respective measured results. Through comparison, it is found that the temperature distribution of laser+GMAW-P hybrid welding possesses the advantages of those in both laser and GMAW-P welding processes so that the improvement of welding productivity and weld quality are ensured.
文摘The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.
基金Project(50876016) support by the National Natural Science Foundation of China
文摘An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.
基金Funded by the National Natural Science Foundation of China(Nos.51278086,51578108)Special Fund for Scientific Research in the Public Interest by Ministry of Water Resource of the People’s Republic of China(No.201501003)
文摘Thermodynamic stability, microvoid distribution and phases transformation of natural pozzolana opal shale(POS) were studied systematically in this work. XRD analysis showed that opal-CT, including microcrystal cristobalite and tridymite, is a major component of POS. DTA and FT-IR indicated that there were many hydroxyl groups and acid sites on the surface of amorphous SiO2 materials. FE-SEM analysis exhibited amorphous SiO2 particles(opal-A) covering over stacking sequences microcrystal cristobalite and tridymite. Meanwhile, MIP analysis demonstrated that porosity and pore size distribution of POS remained uniform below 600 ℃. Because stable porous microstructure is a key factor in improving photocatalyst activity, POS is suited to preparing highly active supported.