The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up ...The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.展开更多
Co-carbonization of weakly caking coal and zinc-containing dust to prepare highly reactive ferro-coke and collaboratively recover zinc powder is one of the feasible ways for steel enterprises to recycle zinc-containin...Co-carbonization of weakly caking coal and zinc-containing dust to prepare highly reactive ferro-coke and collaboratively recover zinc powder is one of the feasible ways for steel enterprises to recycle zinc-containing dust.The pyrolysis mass loss behavior of adding blast furnace dust with different zinc contents to different ferro-coke materials was systematically studied by thermogravimetry and differential thermogravimetry analysis,and the kinetic mechanism of pyrolysis-reduction reaction of hybrid briquette was explored.The results of thermogravimetric curve analysis show that the addition of zinc oxide to the sample has no significant effect on the mass loss rate of the sample below 580℃,and the pyrolysis mass loss of zinc oxide mainly occurs between 800 and 1000℃.Kinetic analysis results show that the pyrolysis of zinc-containing samples is controlled by chemical reactions below 580℃.The reaction at 580–700℃ is controlled by the nucleation and growth model,and that above 700℃ is mainly controlled by diffusion.The results of X-ray diffraction analysis show that the pyrolysis process can effectively remove zinc oxide from ferro-coke.展开更多
基金financially supported by the National Science Centre(Poland)under grant No.N N512 457940the Ministry of Science and Higher Education(Poland)under the statutory funds(BS-1-103-3020/2016)
文摘The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.
基金financially supported by the National Natural Science Foundation of China(No.52274316)the State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(Nos.41620025,41620026,and 41621009)the Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing(the Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-20-014).
文摘Co-carbonization of weakly caking coal and zinc-containing dust to prepare highly reactive ferro-coke and collaboratively recover zinc powder is one of the feasible ways for steel enterprises to recycle zinc-containing dust.The pyrolysis mass loss behavior of adding blast furnace dust with different zinc contents to different ferro-coke materials was systematically studied by thermogravimetry and differential thermogravimetry analysis,and the kinetic mechanism of pyrolysis-reduction reaction of hybrid briquette was explored.The results of thermogravimetric curve analysis show that the addition of zinc oxide to the sample has no significant effect on the mass loss rate of the sample below 580℃,and the pyrolysis mass loss of zinc oxide mainly occurs between 800 and 1000℃.Kinetic analysis results show that the pyrolysis of zinc-containing samples is controlled by chemical reactions below 580℃.The reaction at 580–700℃ is controlled by the nucleation and growth model,and that above 700℃ is mainly controlled by diffusion.The results of X-ray diffraction analysis show that the pyrolysis process can effectively remove zinc oxide from ferro-coke.