期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Implementation of sub-100 nm vertical channel-all-around(CAA) thin-film transistor using thermal atomic layer deposited IGZO channel
1
作者 Yuting Chen Xinlv Duan +9 位作者 Xueli Ma Peng Yuan Zhengying Jiao Yongqing Shen Liguo Chai Qingjie Luan Jinjuan Xiang Di Geng Guilei Wang Chao Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期40-44,共5页
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th... In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment. 展开更多
关键词 In-Ga-Zn-O(IGZO) thermal atomic layer deposition vertical channel thin-film transistor
下载PDF
Electromagnetically induced grating in a thermal N-type four-level atomic system 被引量:2
2
作者 Ya-Bin Dong Jun-Yan Li Zhi-Ying Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期194-199,共6页
The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam i... The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications. 展开更多
关键词 electromagnetically induced grating phase modulation first-order diffraction efficiency thermal atomic system
下载PDF
MD simulation of a copper rod under thermal shock 被引量:4
3
作者 Rong-Hou Xia Xiao-Geng Tian Ya-Peng Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期599-604,共6页
In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost s... In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software. 展开更多
关键词 Embedded atom method potential Molecular dynamics simulation Thermoelastic coupling thermal stress
下载PDF
Properties of the UCHII region G25.4NW and its associated molecular cloud
4
作者 Mei Ai Ming Zhu +1 位作者 Li Xiao Hong-Quan Su 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2013年第8期935-944,共10页
Ultra compact HII (UCHII) G25.4NW is a bright IR source in the region of the inner Galaxy. New HI images from the Very Large Array Galactic Plane Survey show clear absorption features associated with the UCHII regio... Ultra compact HII (UCHII) G25.4NW is a bright IR source in the region of the inner Galaxy. New HI images from the Very Large Array Galactic Plane Survey show clear absorption features associated with the UCHII region up to 95 km s^-1, and there are no other absorptions up to the tangential velocity. This reveals that G25.4NW has a near-side distance of 5.7 kpc, and it is located in the region of the inner Galactic molecular ring. Using the new distance, the bolometric luminosity of G25.4NW is estimated as 105.6 L⊙, which corresponds to an 06 star. It contains 460 M⊙ of ionized gas. A high-resolution ^13CO image from the Galactic Ring Survey reveals that G25.4NW is part of a more extended star-forming complex with about 104 M⊙ of molecular gas. 展开更多
关键词 radiation mechanisms: thermal - ISM: atoms - ISM: HII regions - ISM: molecules
下载PDF
Simultaneous electromagnetically induced transparency and absorption in thermal atomic medium 被引量:1
5
作者 Shangqing Liang Yunfei Xu Qiang Lin 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第9期41-45,共5页
A three-level lambda system driven by multicolor control, pump, and probe fields is investigated. The pump and probe fields are derived from the same laser with opposite propagating directions. Due to the Doppler effe... A three-level lambda system driven by multicolor control, pump, and probe fields is investigated. The pump and probe fields are derived from the same laser with opposite propagating directions. Due to the Doppler effect, the zero group-velocity atoms face bichromatic fields, while other atoms face trichromatic fields. The atomic medium shows distinct characteristics and exhibits simultaneous electromagnetically induced transparency(EIT) and electromagnetically induced absorption(EIA) at two frequencies. EIT and EIA peaks have a fixed relationship with frequency, which is determined by the Doppler shifts. 展开更多
关键词 EIT EIA Simultaneous electromagnetically induced transparency and absorption in thermal atomic medium
原文传递
Nonreciprocal transmission of multi-band optical signals in thermal atomic systems
6
作者 Shengfa Fan Yihong Qi +1 位作者 Yueping Niu Shangqing Gong 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第1期148-154,共7页
Multi-band signal propagation and processing play an important role in quantum communications and quantum computing.In recent years,optical nonreciprocal devices such as an optical isolator and circulator are proposed... Multi-band signal propagation and processing play an important role in quantum communications and quantum computing.In recent years,optical nonreciprocal devices such as an optical isolator and circulator are proposed via various configurations of atoms,metamaterials,nonlinear waveguides,etc.In this work,we investigate all-optical controlled nonreciprocity of multi-band optical signals in thermal atomic systems.Via introducing multiple strong coupling fields,nonreciprocal propagation of the probe field can happen at some separated frequency bands,which results from combination of the electromagnetically induced transparency(EIT) effect and atomic thermal motion.In the proposed configuration,the frequency shift resulting from atomic thermal motion takes converse effect on the probe field in the two opposite directions.In this way,the probe field can propagate almost transparently within some frequency bands of EIT windows in the opposite direction of the coupling fields.However,it is well blocked within the considered frequency region in the same direction of the coupling fields because of destruction of the EIT.Such selectable optical nonreciprocity and isolation for discrete signals may be greatly useful in controlling signal transmission and realizing selective optical isolation functions. 展开更多
关键词 optical nonreciprocity atomic thermal motion electromagnetically induced transparency MULTI-BAND
原文传递
Novel synthesis with an atomized microemulsion technique and characterization of nano-calcium carbonate(CaCO_3)/poly(methyl methacrylate) core-shell nanoparticles 被引量:3
7
作者 Aniruddha Chatterjee Satyendra Mishra 《Particuology》 SCIE EI CAS CSCD 2013年第6期760-767,共8页
The synthesis of hard-core/soft-shell calcium carbonate (CaCO3)/poly(methyl methacrylate) (PMMA) hybrid structured nanoparticles (〈100nm) by an atomized microemulsion polymerization process is reported. The p... The synthesis of hard-core/soft-shell calcium carbonate (CaCO3)/poly(methyl methacrylate) (PMMA) hybrid structured nanoparticles (〈100nm) by an atomized microemulsion polymerization process is reported. The polymer chains were anchored onto the surface of nano-CaCO3 through use of a cou- pling agent, triethoxyvinyl silane (TEVS). Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n-pentanol were used as the initiator, surfactant and cosurfactant, respectively. The polymeriza- tion mechanism of the core-shell latex particles is discussed. The encapsulation of nano-CaCO3 by PMMA was confirmed using a transmission electron microscope (TEM). The grafting percentage of the core-shell particles was investigated by thermogravimetric analysis (TGA). The nano-CaCO3/PMMA core-shell par- ticles were characterized by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results revealed the existence of a strong interaction at the interface of the nano-CaCO3 particle and the PMMA, which implies that the polymer chains were successfully grafted onto the surface of the nano-CaCO3 particles through the link of the coupling agent, In addition, the TGA and DSC results indicated an enhancement of the thermal stability of the core-shell materials compared with that of the pure nano-PMMA, The nano-CaCO3/PMMA particles were blended into a polypropylene (PP) matrix by melt processing. It can also be observed using scanning electron microscopy (SEM) that the PMMA chains grafted onto the CaCO3 nanoparticles interfere with the aggregation of CaCO3 in the polymer matrix (PP matrix) and thus improve the compatibility of the CaCO3 nanoparticles with the PP matrix. 展开更多
关键词 Atomized microemulsion Core-shell nanoparticles thermal properties Compatibility of core-shell nanoparticles with polymer matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部