期刊文献+
共找到974篇文章
< 1 2 49 >
每页显示 20 50 100
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
1
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-ion Batteries battery Construction battery characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow 被引量:3
2
作者 刘燕平 欧阳陈志 +1 位作者 江清柏 梁波 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3970-3976,共7页
Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo... Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB. 展开更多
关键词 优化设计方法 电池组件 参数优化 往复式 空气动力 热管理 计算流体力学 计算流体动力学
下载PDF
The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire 被引量:10
3
作者 Yujun Liu Kai Yang +5 位作者 Mingjie Zhang Shi Li Fei Gao Qiangling Duan Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期532-540,共9页
Currently,the effective and clean suppression of lithium-ion battery(LIB)fires remains a challenge.The present work investigates the use of various inhibitor doses(Xin)of dodecafluoro-2-methylpentan-3-one(C_(6) F_(12)... Currently,the effective and clean suppression of lithium-ion battery(LIB)fires remains a challenge.The present work investigates the use of various inhibitor doses(Xin)of dodecafluoro-2-methylpentan-3-one(C_(6) F_(12)O)in 300 Ah LIBs,and systematically examines the thermal and toxic hazards of the extinguished batteries via real scale combustion and gas analysis.The inhibitor is shown to be completely effective.The inhibition mechanism involves a combination of chemical inhibition and physical cooling.While the chemical inhibition effect tends to saturate with increasing Xin,the physical cooling remains effective at higher inhibitor doses.However,extinguishing the battery fire with a high Xin of C_(6)F_(12)O is found to incur serious toxicity problems.These results are expected to provide a guideline for the design of inhibitor doses for the suppression of LIB fires. 展开更多
关键词 lithium ion battery safety thermal runaway Fire suppression C_(6)F_(12)O
下载PDF
Thermal stability of LiPF_6/EC+DMC+EMC electrolyte for lithium ion batteries 被引量:2
4
作者 WANG Qingsong SUN Jinhua CHEN Chunhua 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期94-99,共6页
The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimet... The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimethyl carbonate (DMC)+ethylmethyl carbonate (EMC) electrolyte, a micro calorimeter C80 micro calorimeter was used in this paper. The electrolyte samples were heated in argon atmosphere, and the heat flow and pressure performances were detected. It is found that LiPF6 influences the thermal behavior remarkably, with more heat generation and lower onset temperature. LiPF6/EC shows an exothermic peak at 212 ℃ with a heat of reaction -355.4 J·g-1. DMC based LiPF6 solution shows two endothermic peak temperatures at 68.5 and 187 ℃ in argon filled vessel at elevated temperature. EMC based LiPF6 solution shows two endothermic peak temperatures at 191 and 258 ℃ in argon filled vessel. 1.0 mol·L-1 LiPF6/EC+DMC+ EMC electrolyte shows an endothermic and exothermic process one after the other at elevated temperature. By comparing with the thermal behavior of single solvent based LiPF6 solution, it can be speculated that LiPF6 may react with EC, DMC and EMC separately in 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte, but the exothermic peak is lower than that of 1.0 mol·L-1 LiPF6/EC solution. Furthermore, The 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte decomposition reaction order was calculated based on the pressure data, its value is n=1.83, and the pressure rate constants kp=6.49×10-2 kPa·-0.83·min-1. 展开更多
关键词 lithium ion battery ELECTROLYTE thermal stability C80 micro CALORIMETER
下载PDF
Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase 被引量:3
5
作者 Peng Zhao Juping Yang +4 位作者 Yuming Shang Li Wang Mou Fang Jianlong Wang Xiangming He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期138-144,共7页
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is important for the battery energy density. In this study, we grafted organic/inorg... Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is important for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 C for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators. 展开更多
关键词 锂离子电池 表面改性 热收缩 聚烯烃 隔膜 厚度 交联网络 有机/无机
下载PDF
Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability
6
作者 禹习谦 胡恩源 +2 位作者 Seongmin Bak 周永宁 杨晓青 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期68-77,共10页
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of th... Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. 展开更多
关键词 过渡金属氧化物 锂离子电池 结构变化 正极材料 循环稳定性 阴极材料 电化学诱导 结构稳定性
下载PDF
Comparative study of different membranes as separators for rechargeable lithium-ion batteries 被引量:4
7
作者 Hong-yan Guan Fang Lian +3 位作者 Yan Ren Yan Wen Xiao-rong Pan Jia-lin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期598-603,共6页
Membranes of polypropylene (PP), PP coated with nano-Al2O3 , PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/PP) w... Membranes of polypropylene (PP), PP coated with nano-Al2O3 , PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/PP) were comparatively studied. Their physical properties were characterized by means of thermal shrinkage test, liquid electrolyte uptake, and field emission scanning electron microscopy (FESEM). Results show that, for the different membranes as PP, PP coated with nano-Al2O3 , PP electrospun with PVdF-HFP, and PP/PE/PP, the thermal shrinkages are 14%, 6%, 12.6%, and 13.3%, while the liquid electrolyte uptakes are 110%, 150%, 217%, and 129%, respectively. In addition, the effects on the performance of lithium-ion batteries (LiFePO4 and LiNi1/3 Co1/3 Mn1/3O2 as the cathode material) were investigated by AC impedance and galvanostatic charge/discharge test. It is found that PP coated with Al2O3 and PP electrospun with PVdF-HFP can effectively increase the wettability between the cathode material and liquid electrolyte, and therefore reduce the charge transfer resistance, which improves the capacity retention and battery performance. 展开更多
关键词 锂离子电池 PP膜 可充电 场发射扫描电子显微镜 PVDF-HFP 聚偏二氟乙烯 液体电解质 LiFePO4
下载PDF
Transition-metal redox evolution and its effect on thermal stability of LiNixCoyMnzO_(2) based on synchrotron soft X-ray absorption spectroscopy 被引量:2
8
作者 Chen Liang Wenhua Zhang +3 位作者 Zesen Wei Zhaoyu Wang Qingsong Wang Jinhua Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期446-454,I0010,共10页
Based on the synchrotron soft X-ray absorption spectroscopy experiments,the fundamental electronic structures of layered Li NixCoyMnzO_(2)(NCM)are investigated systematically and the data of transitionmetal(TM)L-and O... Based on the synchrotron soft X-ray absorption spectroscopy experiments,the fundamental electronic structures of layered Li NixCoyMnzO_(2)(NCM)are investigated systematically and the data of transitionmetal(TM)L-and O K-edges spectra are collected.Distribution of Ni ions under different oxidation states is evaluated according to linear combination fit.It is found that the ratio of Ni^(4+)expands with the increase of Ni since it dominates in charge compensation during charging,and that the existence of Ni^(3+)is nearly negligible in delithiated NCM.The valence state of Co also strongly depends on Ni content,the perceptible position shift of Co L_(3)-edge absorption peak towards higher energy in Ni-rich material agrees well with the small voltage plateau at around 4.2 V.The stability of Mn is verified as no obvious spectral change with the Mn L-edge is observed.Moreover,as Ni content rises,the O 2p holes near the Femi level increases with higher oxidation state of Ni,indicating the enhanced hybridization of O 2p-TM 3 d.Delithiated NCMs with higher Ni content are prior to lose electron existing in highly hybridized Ni3 dO 2 p bands upon heating,which accounts for the pronounced O_(2)release in phase transitions and the deterioration in thermal stability.These detailed observation of the electronic structure evolution is one of the key ingredients to improving the electrochemical and thermal performance of NCM. 展开更多
关键词 lithium ion battery safety Cathode material Soft X-ray absorption spectroscopy thermal stability
下载PDF
Synthesis and characterization of triclinic structural LiVPO_4F as possible 4.2 V cathode materials for lithium ion batteries 被引量:8
9
作者 钟胜奎 尹周澜 +1 位作者 王志兴 陈启元 《Journal of Central South University of Technology》 EI 2007年第3期340-343,共4页
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted unde... A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with LiF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p 1), isostructural with the naturally occurring mineral tavorite, LiFePO4·OH. SEM image exhibits that the particle size is about 2 μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·hg at the rate of 0.2C with an average discharge voltage of 4.2V (vs LiLi+), and the capacity retains 89 mA·hg after 30 cycles. 展开更多
关键词 锂离子电池 阴极材料 热量减少方法 正极材料 碳热还原方法
下载PDF
A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries 被引量:2
10
作者 Chongrong Zhang Hui Li +4 位作者 Shixuan Wang Yuliang Cao Hanxi Yang Xinping Ai Faping Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期33-40,共8页
Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective ap... Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective approach to protecting LIBs from thermal runaway.In this work,we developed a thermal shutdown separator by coating a thin layer of low-density polyethylene microspheres(PM)onto a commercial porous polypropylene(PP)membrane and investigated the thermal response behaviors of the as-prepared PM/PP separator in LIBs.The structural and thermal analysis results revealed that the coated PM layer had a porous structure,which facilitated the occurrence of normal charge-discharge reactions at ambient temperature,although it could melt completely and fuse together within very short time periods:3 s at 110℃and 1 s at 120℃,to block off the pores of the PP substrate,thereby cutting off the ion transportation between the electrodes and interrupting the battery reaction.Consequently,the PM/PP separator exhibits very similar electrochemical performance to that of a conventional separator at ambient temperature.However,it performs a rapid thermal shutdown at an elevated temperature of^110℃,thus controlling the temperature rise and maintaining the cell in a safe status.Due to its synthetic simplicity and low cost,this separator shows promise for possible application in building safe LIBs. 展开更多
关键词 thermal SHUTDOWN SEPARATOR Safety lithium-ion battery
下载PDF
Insight into the structural evolution and thermal behavior of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode under deep charge 被引量:1
11
作者 Chen Liang Lihua Jiang +3 位作者 Zesen Wei Wenhua Zhang Qingsong Wang Jinhua Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期424-432,共9页
By virtue of the crucial effect of the crystal structure and transition metal(TM)redox evolution on the performance of LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM)cathode,systematical investigation is carried out to better understa... By virtue of the crucial effect of the crystal structure and transition metal(TM)redox evolution on the performance of LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM)cathode,systematical investigation is carried out to better understand the charge mechanism upon deep charging.Based on the results of X-ray diffraction and highresolution transmission electron microscope,phase transformations existing on particle surface are promoted by high potential because of the deeper lithium vacancies,accompanied by more substantial structure instability.Soft X-ray absorption spectroscopy indicates that Ni acts as the major contributor to charge compensation while Co displays a remarkable redox activity over the deep charge range.The elevated integrated intensity of pre-edge in O K-edge spectra reveals the extensive amount of holes formed in O 2 p orbitals and the enhanced hybridization of TM 3 d-O 2 p orbitals.Considering the close relationship between thermal behavior and structural evolution,the tendency of phase transitions and O_(2) release upon heating is accelerated by voltage rise,demonstrating the aggravated instability due to deeper Li utilization.Remaining Li contents in NCM are employed to estimate the amount of oxygen released in structural transformation and its detrimental effect on stability declares Li contentdependent characteristics.Furthermore,the extended Li vacancies,higher proportion of Ni4+and stronger orbital hybridization are considered as three factors impeding the thermal stability of the highlydelithiated NCM. 展开更多
关键词 lithium ion battery safety OVERCHARGE Soft X-ray absorption spectroscopy thermal property Cathode material
下载PDF
Tuning the phase evolution pathway of LiNi_(0.5)Mn_(1.5)O_(4) synthesis from binary intermediates to ternary intermediates with thermal regulating agent 被引量:1
12
作者 Libin Wu Hua Huo +7 位作者 Qun Wang Xucai Yin Shu Guo Jiajun Wang Chunyu Du Pengjian Zuo Geping Yin Yunzhi Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期62-70,共9页
Transition metal cation ordering is essential for controlling the electrochemical performance of cubic spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),which is conventionally adjusted by optimizing the high temperature sintering... Transition metal cation ordering is essential for controlling the electrochemical performance of cubic spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),which is conventionally adjusted by optimizing the high temperature sintering and annealing procedures.In this present work,multiple characterization techniques,including 6,7Li NMR,XRD and HRTEM,have been combined to trace the phase transformation and morphology evolution during synthesis.It has been illustrated that simultaneous formation of LiMn_(2)O_(4)(LMO)and LiNiO_(2)(LNO)binary oxides and their conversion into highly reactive LixNi^(3+)_(y)Mn_(3.5+)_(z)O ternary intermediate is a thermal dynamically difficult but crucial step in the synthesis of LNMO ternary oxide.A new strategy of modifying the intermediates formation pathway from binary mode to ternary mode using thermal regulating agent has been adopted.LNMO synthesized with thermal regulating agent exhibits supreme rate capability,long-cycling performance(even at elevated temperature)and excellent capacity efficiency.At a high rate of 100 C,the assembled battery delivers a discharge capacity of 99 mAh g^(-1).This study provides a way to control the formation pathway of complex oxides using thermal regulating agent. 展开更多
关键词 Cation ordering LiNi_(0.5)Mn_(1.5)O_(4) lithium ion batteries Synthesis of ternary oxide thermal regulation
下载PDF
Synthesis and characterization of novel cathode material Li_3V_2(PO_4)_3 by carbon-thermal reduction method 被引量:1
13
作者 钟胜奎 尹周澜 +2 位作者 王志兴 郭华军 李新海 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期708-710,共3页
Li3V2(PO4)3 cathode material was prepared by a carbon-thermal reduction (CTR) process. V2O5, LiOH-H2O, NH4H2PO4 and C were used as starting materials to synthesize Li3V2(PO4)3 by sintering the mixture at 800℃for 24 h... Li3V2(PO4)3 cathode material was prepared by a carbon-thermal reduction (CTR) process. V2O5, LiOH-H2O, NH4H2PO4 and C were used as starting materials to synthesize Li3V2(PO4)3 by sintering the mixture at 800℃for 24 h. The property of the Li3V2(PO4)3 sample was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement. The results show that the Li3V2(PO4)3 sample has the same monoclinic structure as the Li3V2(PO4)3 sample synthesized by hydrogen reduction method. The particle size is about 1.5μm together with homogenous distribution. The initial discharge capacity of Li3V2(PO4)3 powder is 120 mA·h·g-1 at the rate of 0.1C, and the capacity retains 112 mA·h·g-1 after 30 cycles. 展开更多
关键词 阴极材料 LI3V2(PO4)3 合成 碳热还原法 锂离子电池
下载PDF
Analysis of the Thermal Behavior of a Lithium Cell Undergoing Thermal Runaway
14
作者 Qifei Du Zhigang Fang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期887-898,共12页
This study examines the thermal runaway of a lithium ion battery caused by poor heat dissipation performances.The heat transfer process is analyzed on the basis of standard theoretical concepts.Water mist additives ar... This study examines the thermal runaway of a lithium ion battery caused by poor heat dissipation performances.The heat transfer process is analyzed on the basis of standard theoretical concepts.Water mist additives are considered as a tool to suppress the thermal runaway process.The ensuing behaviour of the battery in terms of surface temperature and heat generation is analyzed for different charge and discharge rates.It is found that when the remaining charge is 100%,the heat generation rate of the battery is the lowest,and the surface temperature with a 2C charge rate is higher than that obtained for a 0.5C charge rate.The experimental results show that when the additive concentration is 20%NaCl,its ability to inhibit the thermal runaway is the strongest. 展开更多
关键词 lithium ion battery thermal runaway discharge rate heat generating rate water mist
下载PDF
Preparation and electrochemical characteristics of Co_3(PO_4)_2-coated LiNi_(0.8)Co_(0.2)O_2 by solid-state reaction at room temperature
15
作者 DENG Xinrong HU Guorong PENG Zhongdong YANG Yanan CAO Yanbing DU Ke 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期502-506,共5页
LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2... LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2 coating forms a thin layer on the surface of the LiNi0.8Co0.2O2 material and a solid solution by interacting with the LiNi0.8Co0.2O2 core material during calcination at 700°C for 4 h. Charge-discharge experiment results show that the Co3(PO4)2 coating improves the cycling stability of the LiNi0.8Co0.2O2 cathode material. The capacity retention of the pristine LiNi0.8Co0.2O2 cathode after 50 cycles is 83.6%, whereas it is 91.7% in the case of the LiNi0.8Co0.2O2 cathode coated with 1 wt.% Co3(PO4)2. Storage tests of the 4.35 V charged electrode at 60°C after a month show that the Co3(PO4)2-coated sample exhibits good storage properties compared with the pristine sample. 展开更多
关键词 锂离子电池 电极 涂层 固态反应 电化学特征 Co3(PO4)2
下载PDF
Interconnected sandwich structure carbon/Si-SiO_2/carbon nanospheres composite as high performance anode material for lithium-ion batteries 被引量:3
16
作者 Yuanjin Du Mengyan Hou +3 位作者 Dan Zhou Yonggang Wang Congxiao Wang Yongyao Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期315-323,共9页
In the present work,an interconnected sandwich carbon/Si-SiO_2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently... In the present work,an interconnected sandwich carbon/Si-SiO_2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%. 展开更多
关键词 复合纳米微球 三明治结构 负极材料 二氧化硅 SIO 锂离子电池 碳热 复合物
下载PDF
Thermal Modeling of Cylindrical LiFePO<sub>4</sub>Batteries
17
作者 Mojtaba Shadman Rad Dmitri L. Danilov +2 位作者 Morteza Baghalha Mohammad Kazemeini Peter H. L. Notten 《Journal of Modern Physics》 2013年第7期1-7,共7页
Thermal management of Li-ion batteries is important because of the high energy content and the risk of rapid temperature development in the high current range. Reliable and safe operation of these batteries is serious... Thermal management of Li-ion batteries is important because of the high energy content and the risk of rapid temperature development in the high current range. Reliable and safe operation of these batteries is seriously endangered by high temperatures. It is important to have a simple but accurate model to evaluate the thermal behavior of batteries under a variety of operating conditions and be able to predict the internal temperature as well. To achieve this goal, a radial-axial model is developed to investigate the evolution of the temperature distribution in cylindrical Li-ion cells. Experimental data on LiFePO4 cylindrical Li-ion batteries are used to determine the overpotentials and to estimate the State-of-Charge-dependent entropies from the previously developed adaptive thermal model [1]. The heat evolution is assumed to be uniform inside the battery. Heat exchange from the battery surfaces with the ambient is non-uniform, i.e. depends on the temperature of a particular point at the surface of the cell. Furthermore, the model was adapted for implementation in battery management systems. It is shown that the model can accurately predict the temperature distribution inside the cell in a wide range of operating conditions. Good agreement with the measured temperature development has been achieved. Decreasing the heat conductivity coefficient during cell manufacturing and increasing the heat transfer coefficient during battery operation suppresses the temperature evolution. This modified model can be used for the scale-up of large size batteries and battery packs. 展开更多
关键词 lithium-ion BATTERIES thermal Modeling Entropy Energy ELECTROCHEMISTRY Heat Transfer
下载PDF
电动汽车电池组冷媒直冷系统工作特性的试验
18
作者 单春贤 杨鹏 +1 位作者 唐爱坤 夏灯富 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第1期30-37,共8页
针对一种利用电动汽车空调制冷剂直接冷却电池组的锂离子电池热管理系统,设计了基于口琴管式冷板的电池模组.进行了直冷和液冷的比较,研究了环境温度、压缩机转速、阀门开度及放电倍率对制冷剂流量和蒸发温度的影响,以及对电池组散热特... 针对一种利用电动汽车空调制冷剂直接冷却电池组的锂离子电池热管理系统,设计了基于口琴管式冷板的电池模组.进行了直冷和液冷的比较,研究了环境温度、压缩机转速、阀门开度及放电倍率对制冷剂流量和蒸发温度的影响,以及对电池组散热特性的影响.结果表明:采用直冷方式在控制电池组平均温度上比液冷具有更好的冷却效果;压缩机转速增加对电池组有明显的控温效果,在3500 r/min的转速下即使是2.0 C的高倍率放电也能控制温度在40.00℃以下;阀门开度增大有利于电池组平均温度的下降,但不利于电池组温差的降低;在电池组温差较大的情况下,单体电池温差能占到电池组温差的88%. 展开更多
关键词 锂离子动力电池 汽车热管理 制冷剂 直冷 冷却性能
下载PDF
基于自产热和外传热的锂离子电池热学模型参数辨识方法
19
作者 孙丙香 宋东林 +2 位作者 阮海军 张维戈 郑凯元 《电工技术学报》 EI CSCD 北大核心 2024年第1期278-288,共11页
锂离子电池热学模型参数(热容和热阻)的准确辨识对电池热电耦合建模及状态参数估计至关重要。然而传统测量方法成本高且测试周期长,如何利用充放电工况结合产热和传热机理研究快速热参数辨识方法具有重要意义。以8A×h软包锂离子电... 锂离子电池热学模型参数(热容和热阻)的准确辨识对电池热电耦合建模及状态参数估计至关重要。然而传统测量方法成本高且测试周期长,如何利用充放电工况结合产热和传热机理研究快速热参数辨识方法具有重要意义。以8A×h软包锂离子电池为研究对象,建立分布式热路模型;设计双向脉冲工况实验,采用自适应粒子群算法(APSO)进行辨识;同时采用其他工况进行验证,实验和仿真温度误差小于0.1℃。另外,将热容和热阻转换为比热容和导热系数,并与其他文献中同类电池的参数进行比对,量级接近。研究结果表明,该方法可以有效解决层叠式软包锂离子电池热学模型参数辨识难的问题,且简便易行、成本低。 展开更多
关键词 层叠式软包 锂离子电池 分布式热路模型 热容和热阻 自产热和外传热
下载PDF
锂离子电池热失控气体毒性风险分析方法
20
作者 张青松 曲奕润 刘添添 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期12-19,共8页
为研究锂离子电池热失控气体中主要有毒物质的危害程度,提出一种基于风险评估理论的锂离子电池热失控气体毒性风险分析方法。以点燃参数表征锂离子电池热失控发生概率,利用2种有效剂量分数(FED)方程与气体传感器阵列检测结果,建立锂离... 为研究锂离子电池热失控气体中主要有毒物质的危害程度,提出一种基于风险评估理论的锂离子电池热失控气体毒性风险分析方法。以点燃参数表征锂离子电池热失控发生概率,利用2种有效剂量分数(FED)方程与气体传感器阵列检测结果,建立锂离子电池热失控气体毒性动力学模型,进而表征气体毒性造成的后果,分析不同荷电状态(SOC)下三元锂离子电池热失控气体的毒性风险。结果表明:高SOC锂离子电池更易进入热失控状态,热失控释放的CO、HF及气体总量随SOC的增加而增加;锂离子电池SOC越高,热失控释放气体毒性风险越大,100%SOC锂离子电池毒性风险约为25%SOC锂离子电池的8倍,需要11倍的新鲜空气稀释才能达到安全浓度。研究结果可为锂离子电池热失控早期预警及气体毒性评价提供数据参考。 展开更多
关键词 三元锂离子电池 热失控 气体传感器阵列 风险评估 毒性分析
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部