期刊文献+
共找到1,110篇文章
< 1 2 56 >
每页显示 20 50 100
3D-printable Boron Nitride/Polyacrylic Hydrogel Composites with High Thermal Conductivities
1
作者 DAI Jialei XUE Bingyu +5 位作者 QIAN Qi HE Wenhao ZHU Chenglong LEI Liwen WANG Kun XIE Jingjing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1303-1310,共8页
Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of... Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained. 展开更多
关键词 hydrogel composites boron nitride 3D printing thermal conductivity
下载PDF
New Type of Nitrides with High Electrical and Thermal Conductivities
2
作者 Ning Liu Xiaolong Chen +2 位作者 Jiangang GUO Jun Deng Liwei Guo 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期70-73,共4页
The nitrogen dimer as both a fundamental building unit in designing a new type of nitrides, and a material gene associated with high electrical and thermal conductivities is investigated by first principles calculatio... The nitrogen dimer as both a fundamental building unit in designing a new type of nitrides, and a material gene associated with high electrical and thermal conductivities is investigated by first principles calculations.The results indicate that the predicted Si N4 is structurally stable and reasonably energy-favored with a striking feature in its band structure that exhibits free electron-like energy dispersions. It possesses a high electrical conductivity(5.07 × 10^5 S/cm) and a high thermal conductivity(371 W/m·K) comparable to copper. The validity is tested by isostructural Al N4 and Si C4. It is demonstrated that the nitrogen dimers can supply a high density of delocalized electrons in this new type of nitrides. 展开更多
关键词 Si New Type of Nitrides with High Electrical and thermal conductivities
下载PDF
Experimental investigation on the effective thermal conductivities of different hydrate-bearing sediments 被引量:1
3
作者 Xingxun Li Rucheng Wei +4 位作者 Qingping Li Weixin Pang Qi Fan Guangjin Chen Changyu Sun 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2479-2487,共9页
The natural gas hydrate has been regarded as an important future green energy.Significant progress on the hydrate exploitation has been made,but some challenges are still remaining.In order to enhance the hydrate expl... The natural gas hydrate has been regarded as an important future green energy.Significant progress on the hydrate exploitation has been made,but some challenges are still remaining.In order to enhance the hydrate exploitation efficiency,a significant understanding of the effective thermal conductivity(ETC)of the hydrate-bearing sediment has become essential,since it directly controls the heat and mass transfer behaviors,and thereby determines the stability of hydrate reservoir and production rate.In this study,the effective thermal conductivities of various hydrate-bearing sediments were in-situ measured and studied.The impacts of temperature,particle size and type of sediment were investigated.The effective thermal conductivities of the quartz sand sediments before and after hydrate formation were in-situ measured.The results show the weak negative correlation of effective thermal conductivity of the quartz sand sediment on the temperature before and after the hydrate formation.The effective thermal conductivity of the hydrate-bearing sediment decreases with the increase of particle size of the sediment.The dominant effect of the type of porous medium on the characteristics of the effective thermal conductivity of hydrate-bearing sediment was highlighted.The results indicate that both the effective thermal conductivities of hydrate-bearing quartz sand sediment and hydrate-bearing silicon carbide sediment are weakly negatively correlated with temperature,but the effective thermal conductivity of hydrate-bearing clay sediment is weakly positively dependent on the temperature.In addition,the values of the effective thermal conductivities of various hydrate-bearing sediments are in the order of hydrate-bearing silicon carbide sediment>hydrate-bearing quartz sand sediment>hydrate-bearing clay sediment.These findings could suggest that the intrinsic thermal conductivity of porous medium could control the characteristics of effective thermal conductivity of hydrate-bearing sediment. 展开更多
关键词 HYDRATE thermal conductivity SEDIMENT Heat transfer In-situ measurement
下载PDF
Influences of vacancy defects on thermal conductivities of Ge thin films
4
作者 ZHANG Xingli SUN Zhaowei 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期317-321,共5页
The effects of vacancy defects on the thermal conductivity of Ge thin films were investigated by employing molecular dynamics (MD) simula- tions and theoretical analysis based on the Boltzmann equation. Both the MD ... The effects of vacancy defects on the thermal conductivity of Ge thin films were investigated by employing molecular dynamics (MD) simula- tions and theoretical analysis based on the Boltzmann equation. Both the MD and theoretical results show that the lattice thermal conductivity dramatically decreases with the increasing of vacancy concentration at 400 and 500 K. In addition, the dependence of vacancy concentration on the thermal conductivity of Ge thin films becomes less sensitive as the temperature increases. Theoretical results also confirm that the major part of the lattice thermal conductivity reduction is associated with the point-defect scattering and phonon-phonon scattering processes. 展开更多
关键词 molecular dynamics thermal conductivity vacancy defects thin films GERMANIUM
下载PDF
Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo_(2)AB_(2)(A=S,Se,Te;B=Cl,Br,I)semiconductors
5
作者 廖海俊 黄乐 +4 位作者 谢兴 董华锋 吴福根 孙志鹏 李京波 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期600-608,共9页
The thermoelectric properties of layered Mo_(2)AB_(2)(A=S,Se,Te;B=Cl,Br,I)materials are systematically investigated by first-principles approach.Soft transverse acoustic modes and direct Mo d–Mo d couplings give rise... The thermoelectric properties of layered Mo_(2)AB_(2)(A=S,Se,Te;B=Cl,Br,I)materials are systematically investigated by first-principles approach.Soft transverse acoustic modes and direct Mo d–Mo d couplings give rise to strong anharmonicities and low lattice thermal conductivities.The double anions with distinctly different electronegativities of Mo_(2)AB_(2)monolayers can reduce the correlation between electron transport and phonon scattering,and further benefit much to their good thermoelectric properties.Thermoelectric properties of these Mo_(2)AB_(2)monolayers exhibit obvious anisotropies due to the direction-dependent chemical bondings and transport properties.Furthermore,their thermoelectric properties strongly depend on carrier type(n-type or p-type),carrier concentration and temperature.It is found that n-type Mo_(2)AB_(2)monolayers can be excellent thermoelectric materials with high electric conductivity,σ,and figures of merit,ZT.Choosing the types of A and B anions of Mo_(2)AB_(2)is an effective strategy to optimize their thermoelectric performance.These results provide rigorous understanding on thermoelectric properties of double-anions compounds and important guidance for achieving high thermoelectric performance in multi-anion compounds. 展开更多
关键词 THERMOELECTRICITY ANHARMONICITY lattice thermal conductivity anisotropy first-principles calculations
下载PDF
Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand
6
作者 Yongbin WANG Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第5期689-708,共20页
For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand,a two-step homogenization method is adopted.Based on the distribution of filaments,the superc... For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand,a two-step homogenization method is adopted.Based on the distribution of filaments,the superconducting strand can be decomposed into a set of concentric cylinder layers.Each layer is a two-phase composite composed of the twisted filaments and copper matrix.In the first step of homogenization,the representative volume element(RVE)based finite element(FE)homogenization method with the periodic boundary condition(PBC)is adopted to evaluate the effective thermal conductivities of each layer.In the second step of homogenization,the generalized self-consistent method is used to obtain the effective thermal conductivities of all the concentric cylinder layers.The accuracy of the developed model is validated by comparing with the local and full-field FE simulation.Finally,the effects of the twist pitch on the effective thermal conductivities of twisted multi-filamentary superconducting strand are studied. 展开更多
关键词 superconducting strand multi-filamentary two-step homogenization effective thermal conductivity
下载PDF
Molecular dynamics study of thermal conductivities of cubic diamond,lonsdaleite,and nanotwinned diamond via machine-learned potential
7
作者 熊佳豪 戚梓俊 +6 位作者 梁康 孙祥 孙展鹏 汪启军 陈黎玮 吴改 沈威 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期594-601,共8页
Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important ... Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important polytypes of diamonds,such as cubic diamond,lonsdaleite,and nanotwinned diamond(NTD).The thermal conductivities of semiconductors in high-power devices at different temperatures should be calculated.However,there has been no reports about thermal conductivities of cubic diamond and its polytypes both efficiently and accurately based on molecular dynamics(MD).Here,using interatomic potential of neural networks can provide obvious advantages.For example,comparing with the use of density functional theory(DFT),the calculation time is reduced,while maintaining high accuracy in predicting the thermal conductivities of the above-mentioned three diamond polytypes.Based on the neuroevolution potential(NEP),the thermal conductivities of cubic diamond,lonsdaleite,and NTD at 300 K are respectively 2507.3 W·m^(-1)·K^(-1),1557.2 W·m^(-1)·K^(-1),and 985.6 W·m^(-1)·K^(-1),which are higher than the calculation results based on Tersoff-1989 potential(1508 W·m^(-1)·K^(-1),1178 W·m^(-1)·K^(-1),and 794 W·m^(-1)·K^(-1),respectively).The thermal conductivities of cubic diamond and lonsdaleite,obtained by using the NEP,are closer to the experimental data or DFT data than those from Tersoff-potential.The molecular dynamics simulations are performed by using NEP to calculate the phonon dispersions,in order to explain the possible reasons for discrepancies among the cubic diamond,lonsdaleite,and NTD.In this work,we propose a scheme to predict the thermal conductivity of cubic diamond,lonsdaleite,and NTD precisely and efficiently,and explain the differences in thermal conductivity among cubic diamond,lonsdaleite,and NTD. 展开更多
关键词 DIAMOND neuroevolution potential molecular dynamics thermal conductivity phonon transport
下载PDF
Thermal Conductivities of III-V Antimonides
8
作者 ZHUCheng ZHANGYong-gang LIAi-zhen 《Semiconductor Photonics and Technology》 CAS 2004年第3期208-212,共5页
Thermal parameters of various III-V antimonides,especially the quaternary lattice matched to GaSb or InAs substrates as well as some strained ternaries,have been investigated theoretically.Results show that at most co... Thermal parameters of various III-V antimonides,especially the quaternary lattice matched to GaSb or InAs substrates as well as some strained ternaries,have been investigated theoretically.Results show that at most composition region many ternary and quaternary antimonides exhibit rather lower thermal conductivity compared to related binaries,and the reason has been discussed.The thermal designing rule of the lasers and other power devices using those antimonides also has been discussed. 展开更多
关键词 thermal conductivity ANTIMONIDE TERNARY QUATERNARY
下载PDF
Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers 被引量:12
9
作者 Xuetao Shi Ruihan Zhang +3 位作者 Kunpeng Ruan Tengbo Ma Yongqiang Guo Junwei Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第23期239-249,共11页
Hetero-structured thermally conductive spherical boron nitride and boron nitride nanosheets(BNN-30@BNNS)fillers were prepared via electro static self-assembly method.And the corresponding thermally conductive&elec... Hetero-structured thermally conductive spherical boron nitride and boron nitride nanosheets(BNN-30@BNNS)fillers were prepared via electro static self-assembly method.And the corresponding thermally conductive&electrically insulating BNN-30@BNNS/Si-GFs/E-44 laminated composites were then fabricated via hot compression.BNN-30@BNNS-Ⅲ(fBNN-30/fBNNS,1/2,wt/wt)fillers presented the optimal synergistic improvement effects on the thermal conductivities of epoxy composites.When the mass fraction of BNN-30@BNNS-Ⅲwas 15 wt%,λvalue of the BNN-30@BNNS-Ⅲ/E-44 composites was up to0.61 W m^(-1)K^(-1),increased by 2.8 times compared with pure E-44(λ=0.22 W m^(-1)K^(-1)),also higher than that of the 15 wt%BNN-30/E-44(0.56 W m^(-1)K^(-1)),15 wt%BNNS/E-44(0.42 W m^(-1)K^(-1)),and 15 wt%(BNN-30/BNNS)/E-44(direct blending BNN-30/BNNS hybrid fillers,1/2,wt/wt,0.49 W m^(-1)K^(-1))composites.Theλin-plane(λ//)andλcross-plane(λ_(⊥))of 15 wt%BNN-30@BNNS-Ⅲ/Si-GFs/E-44 laminated composites significantly reached 2.75 W m^(-1)K^(-1)and 1.32 W m^(-1)K^(-1),186.5%and 187.0%higher than those of Si-GFs/E-44 laminated composites(λ//=0.96 W m^(-1)K^(-1)andλ_(⊥)=0.46 W m^(-1)K^(-1)).Established models can well simulate heat transfer efficiency in the BNN-30@BNNS-Ⅲ/Si-GFs/E-44 laminated composites.Under the condition of point heat source,the introduction of BNN-30@BNNS-Ⅲfillers were conducive to accelerating heat flow trans fe r.BNN-30@BNNS-Ⅲ/Si-GFs/E-44 laminated composites also demonstrated outstanding electrical insulating properties(cross-plane withstanding voltage,breakdown strength,surface&volume resistivity of 51.3 kV,23.8 kV mm^(-1),3.7×10^(14)Ω&3.4×10^(14)Ω·cm,favorable mechanical properties(flexural strength of 401.0 MPa and ILSS of 22.3 MPa),excellent dielectric properties(εof 4.92 and tanδof 0.008)and terrific thermal properties(T_(g )of 167.3℃and T_(HRI) of 199.2℃). 展开更多
关键词 Epoxy resins thermally conductive laminated composites Glass fabrics Hetero-structured fillers
原文传递
Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films 被引量:5
10
作者 Ying Li Changdan Gong +4 位作者 Chenggong Li Kunpeng Ruan Chao Liu Huan Liu Junwei Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第23期250-256,共7页
Polymer-dispersed liquid crystal(PDLC)films comprising polyvinyl alcohol(PVA)and liquid crystal monomer(LCM)were successfully obtained by the method of solution casting&thermal compressing.LCM was distributed orde... Polymer-dispersed liquid crystal(PDLC)films comprising polyvinyl alcohol(PVA)and liquid crystal monomer(LCM)were successfully obtained by the method of solution casting&thermal compressing.LCM was distributed orderly in PVA matrix by hydrogen bond interaction,to form PVA-LCM interpe net rating-layered networks.When the mass fraction of LCM was up to 35 wt%,the corresponding in-plane thermal conductivity coefficient(λ//)of PDLC film was significantly increased to 1.41 W m^(-1)K^(-1),about 10.8 times that of neat PVA(0.13 W m^(-1)K^(-1)).High intrinsicλ//values of PDLC films were mainly attributed to the formed microscopic-ordered structures from ordered stacking of LCM,ordered arrangement of PVA chains,and their hydrogen bond interaction.This work would offer a new way to design and prepare novel intrinsic high thermal conductive polymers. 展开更多
关键词 Liquid crystal monomer(LCM) Polyvinyl alcohol(PVA) Intrinsic high thermal conductivity Hydrogen bond interaction
原文传递
INTERACTION MODELS FOR EFFECTIVE THERMAL AND ELECTRIC CONDUCTIVITIES OF CARBON NANOTUBE COMPOSITES 被引量:6
11
作者 Fei Deng Quanshui Zheng 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期1-17,共17页
The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take ac... The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take account of the effects of conductivity anisotropy, nonstraightness, and aspect ratio of the CNT additives on the conductivity enhancement of the composite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities. 展开更多
关键词 thermal conductivity electric conductivity carbon nanotube composite interaction effective models
下载PDF
Orderedisorder transition and thermal conductivities of the(NdSmEuGd)_((1-x)/2)Dy_(2x)Zr_(2)O_(7)series 被引量:3
12
作者 Mengyao Li Chucheng Lin +3 位作者 Yaran Niu Jimei Zhang Yi Zeng Xuemei Song 《Journal of Materiomics》 SCIE CSCD 2023年第1期138-147,共10页
Rare-earth zirconates with pyrochlore and fluorite structures have recently been identified as promising thermal barrier coating materials owing to their low thermal conductivities.In this study,six samples with the g... Rare-earth zirconates with pyrochlore and fluorite structures have recently been identified as promising thermal barrier coating materials owing to their low thermal conductivities.In this study,six samples with the general formula(NdSmEuGd)_((1-x)/2)Dy_(2x)Zr_(2)O_(7)were synthesized to further reduce the thermal conductivity.X-ray diffraction and Raman spectroscopy showed that the transition from an ordered pyrochlore to a disordered fluorite structure is due to cation and anion disorder.Transmission electron microscopy showed that anion disorder occurred before cation disorder.A modified mass disorder parameter was introduced into this system,which can describe the change in thermal conductivity well.This parameter can be a basis for designing more complex materials with lower thermal conductivities. 展开更多
关键词 Orderedisorder transition thermal conductivity High entropy Rare-earth zirconates
原文传递
The Measurement of Thermal Conductivities of Silica and Carbon Black Powders at Different Pressures by Thermal Conductivity Probe 被引量:2
13
作者 X.G.Liang X.S.Ge Y.P.Chang G.Liu D.P.Wu Department of Engineering Thermophysics,University of Science and Technology of China,Hefei,Anhui 230026,China 《Journal of Thermal Science》 SCIE EI CAS CSCD 1992年第2期75-79,共5页
This investigation was done to study the gas filled powder insulation and thermal conductivity probe for the measurement of thermal conductivity of powders.The mathematical analysis showed that the heat capacity of th... This investigation was done to study the gas filled powder insulation and thermal conductivity probe for the measurement of thermal conductivity of powders.The mathematical analysis showed that the heat capacity of the probe itself and the thermal resistance between the probe and powder must be considered.The authors developed a slender probe and measured the effective thermal conductivity of silica and carbon black powders under a variety of conditions. 展开更多
关键词 thermal conductivity POWDERS conductivity probe
原文传递
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:2
14
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Deterioration of equivalent thermal conductivity of granite subjected to heating-cooling treatment 被引量:1
15
作者 Mohua Bu Peng Zhang +3 位作者 Pingye Guo Jiamin Wang Zhaolong Luan Xin Jin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4229-4246,共18页
Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The... Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures. 展开更多
关键词 Equivalent thermal conductivity(ETC) GRANITE Heating-cooling treatment Pore structure MICROCRACK Grain-based model
下载PDF
Boron nitride/agarose hydrogel composites with high thermal conductivities
16
作者 Ali Yazdan Ji-Zhe Wang +4 位作者 Bing-Kun Hu Wen-Sheng Xie Ling-Yun Zhao Ce-Wen Nan Liang-Liang Li 《Rare Metals》 SCIE EI CAS CSCD 2020年第4期375-382,共8页
Hydrogels are cross-linked polymers suitable for various applications,but the thermal conductivities of hydrogel-based composites have not been thoroughly investigated.In this study,agarose hydrogel-based composites w... Hydrogels are cross-linked polymers suitable for various applications,but the thermal conductivities of hydrogel-based composites have not been thoroughly investigated.In this study,agarose hydrogel-based composites with various boron nitride(BN)fillers were synthesized and their thermal conductivities were systematically investigated.With the increase in the agarose content from 1.5 wt%to 3.0 wt%,the thermal conductivity of the composite decreased.The composites with BN micropowder had larger thermal conductivities than those of the composites with BN nanopowder at the same filler loading,as the BN micropowder provided better thermal conduction pathways in the hydrogel matrix than those provided by the nanopowder.The maximum thermal conductivity of 2.69 W m-1·K-1 was achieved when 15 wt%microscale BN fillers were added into 1.5 wt%agarose hydrogel,which was 3.5 times larger than that of the pure agarose hydrogel.Additionally,a theoretical model was used to calculate the thermal conductivities of the BN/agarose hydrogel composites;a good agreement was achieved between the experimental and fitting ones.This study demonstrated that the thermal conductivities of hydrogel-based materials can be efficiently and significantly enhanced using BN fillers. 展开更多
关键词 HYDROGEL Boron nitride thermal conductivity COMPOSITE
原文传递
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
17
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride thermal conductivity Electrical insulation
下载PDF
Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation 被引量:1
18
作者 Yosr Laatiri Habib Sammouda Fadhel Aloulou 《Journal of Renewable Materials》 EI CAS 2024年第4期771-798,共28页
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul... This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems. 展开更多
关键词 CEMENT wood fiber PCM thermal conductivity thermal insulation solar energy
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring 被引量:1
19
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity
20
作者 Shuilai Qiu Hang Wu +1 位作者 Fukai Chu Lei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期224-230,共7页
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b... Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN. 展开更多
关键词 Foam COMPOSITES Dielectric properties thermal conductivity Mechanical properties Flame retardant
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部