Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental resu...Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process.展开更多
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ...The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.展开更多
With the energy crisis and ecological environment deterioration, porous thermal-insulating materials become an advanced research hotspot, and the influence of pore distribution cannot be ignored. The mathematical mode...With the energy crisis and ecological environment deterioration, porous thermal-insulating materials become an advanced research hotspot, and the influence of pore distribution cannot be ignored. The mathematical model is established basing on the heat transfor theory, regarding the minimum heat flux density as the objective function, the constant total porosity as a constraint condition, using the BFGS method to optimize the pore distribution. The results show that when the heat flux is the minimum, in the case of the fixed total porosity, the high temperature zone has high porosity, the low temperature zone has low porosity; the maximal fluctuating amplitude of porosity between the adjacent discrete points has great impact on the thermal insulating performanee, the greater the fluctuating amplitude, the better the thermal insulating ability. After calculating the temperature field of the corresponding physical model, it can be found that the temperature gradient is non-uniform, the temperature gradient of the high temperature zone is steep, and that of the low temperature zone is gentle. These results have guiding significance for preparation of porous thermal-insulating materials.展开更多
We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken f...We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken feathers as an additive to the matrix at 5 and 10 % by weight. The weight of feathers was reduced from the wood fibers to keep the density of the panels constant (0.66 g cm-3). Wollastonite nanofibers acted as filler in the matrix and significantly decreased gas and liquid perme- ability. Higher thermal conductivity of the N-W-treated MDF-mats resulted in a better cure of resin, and conse- quently more integrity in the composite-matrix and lower permeability. The water-repellant property of wollastonite also contributed to the decrease in liquid permeability. Feathers reduced gas and liquid permeability due to the hydrophobic nature of keratin, as well as its formation as a physical barrier towards passing of fluids. Ten percent feather content proved too high and some checks and cracks occurred in the core of the panels after hot-pressing. Panels with 5 %-feather content resulted in both lower fluid flow and adequate physical integrity in the core sec- tion of the MDF-matrix.展开更多
The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific pa...The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given.展开更多
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of...The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-...This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect.展开更多
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pr...This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1.展开更多
La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by the...La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by thermo gravimetric-different thermal analyzer (TG-DTA), X-ray difference (XRD) and scanning electron microscopy (SEM). The thermal conductivity and thermal expansion coefficient were measured by laser-flash method and pushing-rod method, respectively. XRD results showed that LZ7C3 was a mixture of La2Zr2O7 (LZ, pyro- chlore) and La2Ce2O7 (LC, fluorite). The lowest synthesis temperature and time of LZ7C3 were 1400 oC and 5 h. There were no peaks of La2O3 when the powder granularity was about 0.82 μm in the synthesis process. The atom ratio La:Zr:Ce of prepared LZ7C3 powder was very close to 10:7:3 which was the theory value of LZ7C3. The thermal conductivity of LZ7C3 decreased gradually with the temperature increased up to 1200 oC, and was located within 0.79 to 1.02 W/(m·K), which was almost 50% lower than that of LZ, whereas its thermal expansion coefficient was larger and the value was 11.6×10-6 K-1.展开更多
In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the act...In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the action of thermal shock load between-196 and 85 °C; the X-ray diffraction method(XRD) was used to study the change of the residual stress in the thermal shock process of the diamond/Cu composite materials; and the evolution of the fracture microstructure with different thermal shock cycle numbers was observed through scanning electron microscopy(SEM). The results of the study show that the increase of the binder residue at the interface reduces the thermal shock stability of the diamond/Cu composite materials. In addition, under the thermal shock load between-196 and 85 °C, the residual stress of the diamond/Cu composite materials increases continuously with the increase of the cycle numbers, the increase of residual stress leads to a small amount of interface debonding, an increase of the interfacial thermal resistances, and a decrease of the constraints of low-expansion component on material deformation, thus the thermal conductivity decreases slightly and the thermal expansion coefficient increases slightly.展开更多
Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first p...Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first principles calculations which proved the metallic nature of these compounds. Post-DFT(BoltzTraP) calculations were carried out to explore their thermoelectric properties like electrical conductivities. Seebeck coefficient, electronic thermal conductivities and figure of merit. The highest Seebeck coefficient and figure of merit were found for YbAu among these compounds which are 105 μV/K and 0.285 respectively. All the calculations were carried out at 300 K. Large values of figure of merit obtained for these compounds at room temperature indicate that these materials can be used for thermoelectric devices however need experimental verification.展开更多
基金Project(51304254) supported by the National Natural Science Foundation of ChinaProject(2013GK4064) supported by the Strategic Emerging Industry Program of the Ministry of Science and Technology of Hunan Province,China
文摘Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process.
基金the financial assistance received from the Department of Science and Technology(Government of India)for conducting this investigation(Project-SR/FTP/PS-054/2011(G))
文摘The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.
文摘With the energy crisis and ecological environment deterioration, porous thermal-insulating materials become an advanced research hotspot, and the influence of pore distribution cannot be ignored. The mathematical model is established basing on the heat transfor theory, regarding the minimum heat flux density as the objective function, the constant total porosity as a constraint condition, using the BFGS method to optimize the pore distribution. The results show that when the heat flux is the minimum, in the case of the fixed total porosity, the high temperature zone has high porosity, the low temperature zone has low porosity; the maximal fluctuating amplitude of porosity between the adjacent discrete points has great impact on the thermal insulating performanee, the greater the fluctuating amplitude, the better the thermal insulating ability. After calculating the temperature field of the corresponding physical model, it can be found that the temperature gradient is non-uniform, the temperature gradient of the high temperature zone is steep, and that of the low temperature zone is gentle. These results have guiding significance for preparation of porous thermal-insulating materials.
基金supported by Shahid Rajaee Teacher Training University
文摘We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken feathers as an additive to the matrix at 5 and 10 % by weight. The weight of feathers was reduced from the wood fibers to keep the density of the panels constant (0.66 g cm-3). Wollastonite nanofibers acted as filler in the matrix and significantly decreased gas and liquid perme- ability. Higher thermal conductivity of the N-W-treated MDF-mats resulted in a better cure of resin, and conse- quently more integrity in the composite-matrix and lower permeability. The water-repellant property of wollastonite also contributed to the decrease in liquid permeability. Feathers reduced gas and liquid permeability due to the hydrophobic nature of keratin, as well as its formation as a physical barrier towards passing of fluids. Ten percent feather content proved too high and some checks and cracks occurred in the core of the panels after hot-pressing. Panels with 5 %-feather content resulted in both lower fluid flow and adequate physical integrity in the core sec- tion of the MDF-matrix.
基金Supported by the National Natural Science Foundation of China(50779030,50879044,2008BAB29B03)the National Defenses Bureau(838)
文摘The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given.
文摘The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
文摘This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect.
基金financially supported by the National Natural Science Foundation of China (No.51274040)the Fundamental Research Funds for the Central Universities (No.FRF-TP-10-003B)
文摘This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1.
基金Project supported by National Basic Research Program of China (973 Program, 613112)
文摘La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by thermo gravimetric-different thermal analyzer (TG-DTA), X-ray difference (XRD) and scanning electron microscopy (SEM). The thermal conductivity and thermal expansion coefficient were measured by laser-flash method and pushing-rod method, respectively. XRD results showed that LZ7C3 was a mixture of La2Zr2O7 (LZ, pyro- chlore) and La2Ce2O7 (LC, fluorite). The lowest synthesis temperature and time of LZ7C3 were 1400 oC and 5 h. There were no peaks of La2O3 when the powder granularity was about 0.82 μm in the synthesis process. The atom ratio La:Zr:Ce of prepared LZ7C3 powder was very close to 10:7:3 which was the theory value of LZ7C3. The thermal conductivity of LZ7C3 decreased gradually with the temperature increased up to 1200 oC, and was located within 0.79 to 1.02 W/(m·K), which was almost 50% lower than that of LZ, whereas its thermal expansion coefficient was larger and the value was 11.6×10-6 K-1.
基金financially supported by the Program of National Natural Science Foundation of China (No. 50971020)
文摘In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the action of thermal shock load between-196 and 85 °C; the X-ray diffraction method(XRD) was used to study the change of the residual stress in the thermal shock process of the diamond/Cu composite materials; and the evolution of the fracture microstructure with different thermal shock cycle numbers was observed through scanning electron microscopy(SEM). The results of the study show that the increase of the binder residue at the interface reduces the thermal shock stability of the diamond/Cu composite materials. In addition, under the thermal shock load between-196 and 85 °C, the residual stress of the diamond/Cu composite materials increases continuously with the increase of the cycle numbers, the increase of residual stress leads to a small amount of interface debonding, an increase of the interfacial thermal resistances, and a decrease of the constraints of low-expansion component on material deformation, thus the thermal conductivity decreases slightly and the thermal expansion coefficient increases slightly.
文摘Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first principles calculations which proved the metallic nature of these compounds. Post-DFT(BoltzTraP) calculations were carried out to explore their thermoelectric properties like electrical conductivities. Seebeck coefficient, electronic thermal conductivities and figure of merit. The highest Seebeck coefficient and figure of merit were found for YbAu among these compounds which are 105 μV/K and 0.285 respectively. All the calculations were carried out at 300 K. Large values of figure of merit obtained for these compounds at room temperature indicate that these materials can be used for thermoelectric devices however need experimental verification.