The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t...The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.展开更多
The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of t...The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.展开更多
The thermal fatigue cracking behavior of high Si-Mo nodular cast iron (NCI) is investigated by means of optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscope (EDS), in ...The thermal fatigue cracking behavior of high Si-Mo nodular cast iron (NCI) is investigated by means of optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscope (EDS), in order to find a new material used in exhaust manifolds in First Automotive Works (FAW) .Nodular cast irons with silicon content about 4.7% , in combination with up to 1.1% molybdenum , were produced by Jilin University and FAW. The repeated heating / cooling test was performed under cyclic heating at various maximum heating temperatures (Tmax) ranging from 800to 900℃.Experimental results indicate that the thermal fatigue cracking resistance of high Si-Mo NCI decreases with increasing the maximum heating temperature.The periods for crack initiation are 24-36 , 40-50and 70-90times associated with heating temperature of 900 , 850and 800℃ , respectively , when the holding time is about 10min at Tmax.When thermal fatigue cracking occurs , the cracking always initiates at the bigger surface of specimen.The major positions of cracks propagation are generally at the eutectic oxide boundary region and the region of the graphite disappearance.At the same time , the oxidation may accelerate crack initiation and propagation.On the other hand , micro-crack number varied from large to little because of shielding effect.As exhaust manifolds , the reasonable working temperature of high Si-Mo NCI is no more than 840℃ by test and analysis.展开更多
基金funding support from the Natural Science Foundation of Sichuan,China(Grant No.2022NSFSC1227)the National Natural Science Foundation of China(Grant Nos.U1762216 and 51574270).
文摘The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.
文摘The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.
基金Item Sponsored by Science and Technology Supporting Project of Jilin Province of China (2007301)
文摘The thermal fatigue cracking behavior of high Si-Mo nodular cast iron (NCI) is investigated by means of optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscope (EDS), in order to find a new material used in exhaust manifolds in First Automotive Works (FAW) .Nodular cast irons with silicon content about 4.7% , in combination with up to 1.1% molybdenum , were produced by Jilin University and FAW. The repeated heating / cooling test was performed under cyclic heating at various maximum heating temperatures (Tmax) ranging from 800to 900℃.Experimental results indicate that the thermal fatigue cracking resistance of high Si-Mo NCI decreases with increasing the maximum heating temperature.The periods for crack initiation are 24-36 , 40-50and 70-90times associated with heating temperature of 900 , 850and 800℃ , respectively , when the holding time is about 10min at Tmax.When thermal fatigue cracking occurs , the cracking always initiates at the bigger surface of specimen.The major positions of cracks propagation are generally at the eutectic oxide boundary region and the region of the graphite disappearance.At the same time , the oxidation may accelerate crack initiation and propagation.On the other hand , micro-crack number varied from large to little because of shielding effect.As exhaust manifolds , the reasonable working temperature of high Si-Mo NCI is no more than 840℃ by test and analysis.