An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and t...An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and the effect of different thermal cycling treatment on the microyield behaviors of the composite were studied. Based on TEM and HREM observation of microstructure, the mechanism of microyield behavior in the Al 2O 3p/6061 composite was analyzed. The results indicate that the microyield behavior of the Al 2O 3p/6061 composite can be described by Brown Lukens theory, which was used satisfactorily for aluminum alloys and other light alloys, and is affected greatly by the different thermal cycling treatment. The more the cycles of thermal cycling treatment, the higher to microyield strength at small strains. Thermal cycling treatment affects mainly the thermal mismatch stress and the density of movable dislocations in the matrix.展开更多
文摘An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and the effect of different thermal cycling treatment on the microyield behaviors of the composite were studied. Based on TEM and HREM observation of microstructure, the mechanism of microyield behavior in the Al 2O 3p/6061 composite was analyzed. The results indicate that the microyield behavior of the Al 2O 3p/6061 composite can be described by Brown Lukens theory, which was used satisfactorily for aluminum alloys and other light alloys, and is affected greatly by the different thermal cycling treatment. The more the cycles of thermal cycling treatment, the higher to microyield strength at small strains. Thermal cycling treatment affects mainly the thermal mismatch stress and the density of movable dislocations in the matrix.