期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
Study on thermal decomposition kinetics of azobenzene-4,4′-dicarboxylic acid by using compensation parameter method and nonlinear fitting evaluation
1
作者 Shuyi Shen Song Guo +1 位作者 Sining Chen Jinhua Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期269-279,共11页
Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application ... Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained. 展开更多
关键词 Azobenzene-4 4′-dicarboxylic acid thermal decomposition behavior kinetic mechanism thermal hazard evaluation Compensation parameter effect
下载PDF
Thermal decomposition mechanism and non-isothermal kinetics of the polyoxometalate of ciprofloxacin with 12-tungstoboric acid 被引量:1
2
作者 WANGDunjia FANGZhengdong HANDeyan 《Rare Metals》 SCIE EI CAS CSCD 2005年第1期15-21,共7页
The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its therm... The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined. 展开更多
关键词 physical chemistry thermal decomposition mechanism non-isothermal kinetics TG-DTG polyoxometalate complex CIPROFLOXACIN tungstoborate
下载PDF
Synthesis, Characterization, Thermal Decomposition Mechanism and Non-Isothermal Kinetics of Salicylaldehyde Salicylhydrazone and Its Complex of Erbium(Ⅲ)
3
作者 吴望婷 何水样 +3 位作者 刘煜 赵宏安 胡荣祖 史启祯 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第S1期16-20,共5页
The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by el... The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method. 展开更多
关键词 salicylaldehyde salicyloyhydrazone erbium(Ⅲ) complex thermal decomposition non-thermal kinetics mechanism function rare earths
下载PDF
Syntheses,Crystal Structures and Kinetic Mechanisms of Thermal Decomposition of Rare Earth Complexes with Schiff Base Derived from o-Vanillin and p-Toluidine 被引量:5
4
作者 赵国良 冯云龙 温一航 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期268-275,共8页
Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methox... Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained. 展开更多
关键词 O-VANILLIN P-TOLUIDINE Schiff base crystal structure kinetic mechanism of thermal decomposition rare earths
下载PDF
Synthesis, Crystal Structure and Kinetic Mechanism of Thermal Decomposition of a Zinc(II) Complex with N-Salicylidene-p-toluidine 被引量:2
5
作者 ZHAO Guo-Liang WEN Yi-Hang YU Yu-Ye 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第5期609-615,共7页
The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. Th... The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group Cc with a = 14.896(3), b = 12.506(2), c = 15.352(3) A,β = 114.711 (4)°, V = 2598.0(8) A^3, C28H26ZnCl2N2O2, Mr = 558.80, Z = 4, Dc = 1 .429 g/cm^3,μ = 1.179 mm^-1, Flack parameter = 0.027(19), F(000) = 1152, R = 0.0709 and wR = 0.1041 for 3117 observed reflections (Ⅰ 〉 2σ(Ⅰ)). In complex 1, the center Zn ion is four-coordinated by two O atoms from two Schiff base ligands and two Cl atoms in a distorted tetrahedral geometry. Additionally, the thermal decomposition of complex 1 as well as its kinetic mechanisms and equations is studied under the non-isothermal integral and differential methods in air by TG-DTG curves. 展开更多
关键词 zinc(Ⅱ) complex N-salicylidene-p-toluidine crystal structure kinetic mechanism of thermal decomposition
下载PDF
Isothermal thermo-analytical study and decomposition kinetics of non-activated and mechanically activated indium tin oxide(ITO) scrap powders treated by alkaline solution
6
作者 B.JANKOVI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1657-1676,共20页
Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanical... Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanically activated. It has been found that in the case of activated sample, shorter induction periods appear, which permits growth of smaller crystals, while in the case of non-activated sample, long induction periods appear, characterized by the growth of larger crystals. DAEM approach has shown that decomposition processes of non-activated and mechanically activated samples can be described by contracting volume model with a linear combination of two different density distribution functions of apparent activation energies(Ea), and with first-order model, with a single symmetrical density distribution function of Ea, respectively. It was established that specific characteristics of particles not only affect the mechanism of decomposition processes, but also have the significant impact on thermodynamic properties. 展开更多
关键词 indium tin oxide mechanical activation chemical preparation grain boundaries thermal properties decomposition kinetics
下载PDF
Thermal decomposition mechanism and kinetics of bastnaesite in suspension roasting process:A comparative study in N_(2) and air atmospheres
7
作者 Wenbo Li Jijia Chen +2 位作者 Shaokai Cheng Junyan Sun Xiaolong Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1809-1816,I0006,共9页
To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analy... To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analyzer,X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).Subsequently,the kinetic parameters of bastnaesite in the suspension roasting process were derived and calculated using the isothermal method.The results show that the decomposition product of bastnaesite in N_(2) is CeOF.However,once the roasting temperature exceeds 600℃,CO is generated in addition to CO_(2),and all the XRD diffraction peaks of CeOF are shifted to the right,indicating that CO_(2) can oxidize CeOF and lead to the transformation of Ce(Ⅲ) into Ce(Ⅳ).When roasted in air,the decomposition product CeOF can be completely converted to CeF3 and Ce_(7)O_(12) as it easily oxidizes.Additionally,the reaction rate of bastnaesite in air is higher than that of N_(2),and the starting reaction temperature is lower than that of N_(2).A large number of irregular cracks and holes appear on the surface of solid-phase products following suspension roasting,which are due to the thermal decomposition of bastnaesite that produces CO_(2) as well as the reconstruction of the lattice of the solid-phase products.The reaction kinetic model of bastnaesite roasted in N_(2)(temperature range 600-750℃) and air(temperatu re range 500-575℃) confo rms to the A_(3/2) model with the mechanism function G(α)=-ln(1-α)^(2/3),and the reaction activation energy is 59.78 kj/mol and lnA is 1.65 s^(-1) in N_(2) atmosphere.In air,the reaction activation energy is 100.30 kj/mol and lnA is 9.63 s^(-1). 展开更多
关键词 Rare earths BASTNAESITE Suspension roasting thermal decomposition mechanism Reaction kinetics
原文传递
Kinetics Study on the Thermal Decomposition of Europium p-methyl-benzoate Complex with 1,10-penanthroline under Non-isothermal Con-ditions 被引量:3
8
作者 Huifang Yang, Jianjun Zhang, Ruifen Wang (Department of Material, Shjiazhuang Railway College, Shijiazhuang 050043, China Experimental Center, Hebei Normal University, Shijiazhuang 050016, China) 《Rare Metals》 SCIE EI CAS CSCD 2001年第2期133-136,共4页
The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition pro... The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol. 展开更多
关键词 thermal decomposition non-isothermal kinetics mechanismS Eu(III) complex
下载PDF
Kinetics of the Thermal Decomposition of Magnesium Salicylate Powder in Air 被引量:2
9
作者 DIAKITE Kahirou HONG Jian-he +1 位作者 ZHAN Dan ZHANG Ke-li 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期617-620,共4页
Simultaneous thermogravimetry-differential thermal analysis (TG-DTA) was used to study the kinetics and the degradation of magnesium salicylate( C14H10MgO6 ) in air. The results show that the decomposition proceed... Simultaneous thermogravimetry-differential thermal analysis (TG-DTA) was used to study the kinetics and the degradation of magnesium salicylate( C14H10MgO6 ) in air. The results show that the decomposition proceeds through two steps. The kinetics of the first decomposition step was studied. The activation energies were calculated by using the Friedman and Flynn Wall Ozawa(FWO) methods, and the most probable kinetic model function was estimated using the multiple linear regression method. The values of the correlated kinetic parameters for the first decomposition step are E = 152.97 kJ/mol, lg(A/S^-1 ) = 10. 78, f(α) = ( 1 - α)^n( 1 +Kcatα), n =0. 691, and Kcat = 1. 3048. 展开更多
关键词 Magnesium salicylate TG-DTA thermal decomposition mechanism kinetics
下载PDF
Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air 被引量:2
10
作者 刘欣伟 冯雅丽 李浩然 《Journal of Central South University》 SCIE EI CAS 2011年第6期1865-1870,共6页
The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffracti... The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Subsequently, the thermal decomposition process of basic magnesium carbonate in air was studied by thermogravimetry-differential thermogravimetry (TG-DTG). The results of XRD confirm that the chemical composition of basic magnesium carbonate is 4MgCO3·Mg(OH)2·4H2O. And the SEM images show that the sample is in sheet structure, with a diameter of 0.1-1 μm. The TG-DTG results demonstrate that there are two steps in the thermal decomposition process of basic magnesium carbonate. The apparent activation energies (E) were calculated by Flyrm-Wall-Ozawa method. It is obtained from Coats-Redfem's equation and Malek method that the mechanism functions of the two decomposition stages are D3 and A1.5, respectively. And then, the kinetic equations of the two steps were deduced as well. 展开更多
关键词 basic magnesium carbonate TG-DTG thermal decomposition kinetics mechanism function
下载PDF
Thermal Decomposition Reaction Kinetics Model of Powdered Bastnaesite 被引量:1
11
作者 涂赣峰 张世荣 +2 位作者 任存治 邢鹏飞 张成祥 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第4期265-267,共3页
The thermal decomposition procedure of powdered bastnaesite from Mianning was investigated, and TG DTA curves of bastnaesite were tested in atmosphere. According to the model provided by Criado, the kinetics data we... The thermal decomposition procedure of powdered bastnaesite from Mianning was investigated, and TG DTA curves of bastnaesite were tested in atmosphere. According to the model provided by Criado, the kinetics data were calculated and treated with thermal analysis techniques, and kinetics curves of thermal decomposition reaction of powdered bastnaesite were drawn. Comparing these curves with the standard curves and combining with the previous research results of kinetics parameter calculation, the results confirmed that the reaction mechanism was nucleation and nuclei growth, and its differential and integral forms of reaction kinetics model can be expressed as: f(α)=(1-α) and g(α) =-ln(1- α ) respectively. 展开更多
关键词 rare earths bastnasite thermal decomposition kinetics reaction mechanism
下载PDF
Kinetics of the Thermal Decomposition of Wangjiatan Siderite 被引量:4
12
作者 冯志力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期523-526,共4页
The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n... The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n-order was between 1.16 and 1.29.The results from non-isothermal experiments show that the size of particles has an obvious effect on the logarithm of pre-exponential factor in kinetics parameter of the thermal decomposition of Wangjiatan siderite.A linear relationship is shown between the size of particles and the logarithm of pre-exponential factor.An F 1 kinetic model containing size factor describes the thermal decomposition of Wangjiatan siderite well. 展开更多
关键词 thermal decomposition mechanism kinetics siderite
下载PDF
Theoretical analysis and experimental verification of thermal decomposition mechanism of CuSe 被引量:1
13
作者 Huan LUO Heng XIONG +5 位作者 Wen-long JIANG Lang LIU Guo-zheng ZHA Tian-tian ZHEN Bin YANG Bao-qiang XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3478-3486,共9页
Experiments on the thermal decomposition of CuSe were carried out by using a thermogravimetric analyzer(TGA)at different heating rates.The kinetic parameters and mechanisms were discussed based on model-free and model... Experiments on the thermal decomposition of CuSe were carried out by using a thermogravimetric analyzer(TGA)at different heating rates.The kinetic parameters and mechanisms were discussed based on model-free and model-based analyses.The decomposition rate and decomposition behavior of CuSe were investigated by using a vacuum thermogravimetric furnace.The results showed that the R3 model was identified as the most probable mechanism function under the present experimental conditions.The average values of activation energy and the pre-exponential factor were 12.344 J/mol and 0.152 s^(−1),respectively.The actual decomposition rate of CuSe was found to be 0.0030 g/(cm^(2)·min). 展开更多
关键词 CuSe thermal decomposition non-isothermal kinetics mechanism
下载PDF
Thermal Decomposition Kinetics of Ni(Ⅱ)Complex with Norfloxacin
14
作者 张建军 戴玉杰 +3 位作者 张秀利 陈会兰 葛立国 周清泽 《Rare Metals》 SCIE EI CAS CSCD 1999年第2期58-63,共6页
The thermal decomposition of the 2H2O (NFA=C16H18FN3O3, norfloxacin) and its kinetics were studied under the nonisothermal condition in nitrogen by TGDTG and DTA methods. The intermediate and residue for each decompo... The thermal decomposition of the 2H2O (NFA=C16H18FN3O3, norfloxacin) and its kinetics were studied under the nonisothermal condition in nitrogen by TGDTG and DTA methods. The intermediate and residue for each decomposition were identified from TG curve. The Achar method and the MadhusudananKrishnanNinan (MKN) method were used to analyze the nonisothermal kinetic data. The possible reaction mechanisms were investigated by comparing the kinetic parameters. The kinetic equation for the third stage and the mathematical expressions for the kinetic compensation effects of the third stage were obtained. 展开更多
关键词 thermal decomposition Nonisothermal kinetics mechanisms Ni() Complex NORFLOXACIN
下载PDF
Kinetics of Thermal Decomposition for Complex [Zn(C_(16)H_(18)FN_3O_3)_2(NO_3)_2]·2H_2O
15
作者 张建军 戴玉杰 《Rare Metals》 SCIE EI CAS CSCD 2000年第4期285-289,共5页
The thermal decomposition reaction of the [Zn(NFA)_2(NO_3)_2]·2H_2O(NFA=C_ 16H_ 18FN_3O_3,norfloxacin) was studied in a static atmosphere using TG-DTG and DTA methods. The thermal decomposition processes of the... The thermal decomposition reaction of the [Zn(NFA)_2(NO_3)_2]·2H_2O(NFA=C_ 16H_ 18FN_3O_3,norfloxacin) was studied in a static atmosphere using TG-DTG and DTA methods. The thermal decomposition processes of the complex were determined and its kinetics was investigated. The kinetic parameters were obtained from analysis of the TG-DTG curves by differential and integral methods. The most pro- bable mechanism for the second stage was suggested by comparision of the kinetic parameters. 展开更多
关键词 thermal decomposition Non-isothermal kinetics mechanismS Zn(Ⅱ) complex NORFLOXACIN
下载PDF
Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity
16
作者 Shuilai Qiu Hang Wu +1 位作者 Fukai Chu Lei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期224-230,共7页
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b... Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN. 展开更多
关键词 Foam COMPOSITES Dielectric properties thermal conductivity mechanical properties flame retardant
下载PDF
Thermal Decomposition Behavior of Terephthalate in Inert Gas
17
作者 Yu Jing Wang Jiming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第3期1-8,共8页
Several metal terephthalates were synthesized by hydrothermal solvent method. Firstly, the coordination type of metal ions and carboxylates in terephthalate was studied by FTIR spectroscopy. The results showed that th... Several metal terephthalates were synthesized by hydrothermal solvent method. Firstly, the coordination type of metal ions and carboxylates in terephthalate was studied by FTIR spectroscopy. The results showed that the binding type of zinc terephthalate and aluminum terephthalate are mainly bridged coordination, while the chelating coordination mode dominated in the magnesium terephthalate and cerium terephthalate. Secondly, the thermal decomposition mechanism of zinc terephthalate in nitrogen atmosphere was studied by TG and Py-GC/MS techniques. Finally, the activation energy of the thermal decomposition process was obtained by the Friedman method and the Flynn-Wall-Ozawa(FWO) method, and the most probabilistic function was obtained by multiple linear fitting. The results showed that the decomposition process of zinc terephthalate was an one-step reaction and the activation energy was equal to 187.38 kJ/mol. 展开更多
关键词 TEREPHTHALATE TG/DTG thermal decomposition mechanism kinetics
下载PDF
Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins
18
作者 Hongliang Ding Xin Wang +1 位作者 Lei Song Yuan Hu 《Journal of Renewable Materials》 SCIE EI 2022年第4期871-895,共25页
Benzoxazines have attracted wide attention from academics all over the world because of their unique properties.However,most of the production and preparation of benzoxazine resins depends on petroleum resources now,e... Benzoxazines have attracted wide attention from academics all over the world because of their unique properties.However,most of the production and preparation of benzoxazine resins depends on petroleum resources now,especially bisphenol A-based benzoxazine.Therefore,owing to the environmental impacts,the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines.Similar to petroleum-based benzoxazines,most of bio-based benzoxazines suffer from flammability.Thus,it is necessary to endow bio-based benzoxazines with outstanding flame retardancy.The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines.First,three methods of the synthesis of bio-based benzoxazines are introduced briefly.Furthermore,the curing mechanism of benzoxazine and the effect of branched chains on the curing behavior are also discussed and summarized.Subsequently,this review focuses on fully bio-based benzoxazines,partly bio-based benzoxazines,and bio-based benzoxazine composite materials in terms of flame retardancy as well as thermal stability and some other special properties.Finally,we give a brief comment on the challenges and prospects of the future development of flame retardant bio-based benzoxazines. 展开更多
关键词 Bio-based benzoxazine curing mechanism thermal stability flame retardancy
下载PDF
Kinetics and Mechanism of the Thermal Decomposition Reaction of 3,3-Bis(azidomethyl)oxetane/Tetrahydrofuran Copolymer 被引量:5
19
作者 罗阳 陈沛 +3 位作者 赵凤起 胡荣祖 李上文 高茵 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2004年第11期1219-1224,共6页
The thermal behavior, mechanism and kinetic parameters of the exothermic decomposition reaction of 3,3-bis(azidomethyl)oxetane/tetrahydrofuran (BAMO/THF) copolymer in a temperature-programmed mode have been investigat... The thermal behavior, mechanism and kinetic parameters of the exothermic decomposition reaction of 3,3-bis(azidomethyl)oxetane/tetrahydrofuran (BAMO/THF) copolymer in a temperature-programmed mode have been investigated by means of DSC, TG-DTG, fast and lower thermolysis/FTIR and TG-MS. The reaction mecha-nism was proposed. The apparent activation energy and pre-exponential constant of exothermic decomposition re-action of the compound at 0.1 MPa are 167.04 kJ昺ol-1 and 1014.41 s-1, respectively. The corresponding critical temperatures of thermal explosion obtained from the onset temperature Te and the peak temperature Tp are 223.20 and 245.78 ℃, respectively. The kinetic equation of the exothermic decomposition process of BAMO/THF at 0.1 MPa could be expressed as: ()[]24315.1922.009×10/d10ln1edTTaa-=-- 展开更多
关键词 BAMO/THF copolymer thermal decomposition kinetic parameter mechanism
原文传递
Synthesis, Characterization, Thermal Decomposition Mechanism and Non-Isothermal Kinetics of the Pyruvic Acid-Salicylhydrazone and Its Complex of Praseodymium(III) 被引量:2
20
作者 何水样 刘煜 +4 位作者 赵建社 赵宏安 杨锐 胡荣祖 史启祯 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2003年第2期139-145,共7页
The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid... The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters. 展开更多
关键词 pyruvic acid salicylhydrazone praseodymium(III) complex thermal decomposition non isothermal kinetics mechanism function
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部