In the present study,flavor profiles of Chinese spiced beef in the cooking process were comparatively analyzed by electronic nose,gas chromatography–mass spectrometry(GC–MS)with a thermal desorption system(TDS),and ...In the present study,flavor profiles of Chinese spiced beef in the cooking process were comparatively analyzed by electronic nose,gas chromatography–mass spectrometry(GC–MS)with a thermal desorption system(TDS),and solid-phase microextraction(SPME).A total of 82 volatile compounds were identified,and 3-methyl-butanal,pentanal,hexanal,-xylene,heptanal,limonene,terpinene,octanal,linalool,4-terpinenol,-terpineol,and(E)-anethole were identified as the characteristic flavor compounds in Chinese spiced beef.Variation in the content of volatile components produced by different cooking processes was observed.In general,a cooking time of 4 h resulted in optimal flavor quality and stability.Results indicated that the electronic nose could profile and rapidly distinguish variation among different cooking time.The volatile profiling by TDS-GC–MS and responses from the electronic nose,in combination with multivariate statistical analysis,are a promising tool for control the cooking process of spiced beef.展开更多
The multi-walled carbon nanotubes(MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition(CCVD) process, and were thermally annealed by the hot filament plasma enhanced(HF PE) method a...The multi-walled carbon nanotubes(MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition(CCVD) process, and were thermally annealed by the hot filament plasma enhanced(HF PE) method at 550℃ for two hours.The x-ray absorption near edge structure(XANES) technique was used to investigate the adsorption and desorption phenomena of the MWCNTs at normal and grazing incidence angles.The adsorbates were found to have different sensitivities to the thermal annealing.The geometry of the incident beam consistently gave information about the adsorption and desorption phenomena.In addition, the adsorption of non-intrinsic potassium quantitatively affected the intrinsic adsorbates and contributed to increase the conductivity of the MWCNTs.The desorption of potassium was almost 70% greater after the thermal annealing.The potassium non-intrinsic adsorbates are from a physisorption mechanism whereas the intrinsic adsorbates result from chemisorption.展开更多
The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV an...The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV and 180 keV were introduced by ion implantation to a certain dose(peak displacement damage 1-10 dpa).Then thermal desorption spectroscopy(TDS)of helium atoms was performed to discuss the helium desorption characteristic and trapping sites.The desorption peaks shift to a lower temperature with increasing dpa for both 80 keV and 180 keV irradiation,reflecting the reduced diffusion activation energy and faster diffusion within the alloy.The main release peak temperature of 180 keV helium injection is relatively higher than that of 80 keV at the same influence,which is because the irradiation damage of 180 keV,helium formation and entrapment occur deeper.The broadening of the spectra corresponds to different helium trapping sites(He-vacancies,grain boundary)and desorption mechanisms(different Hen Vm size).The helium retention amount of 80 keV is lower than that of 180 keV,and a saturation limit associated with the irradiation of 80 keV has been reached.The relatively low helium retention proves the better resistance to helium bubbles formation and helium brittleness.展开更多
In this article,the binding forms of two lignite samples are determined by thermal desorption using a high-temperature furnace.Each mercury compound,such as HgCl2,has a specifc binding strength whose decomposition req...In this article,the binding forms of two lignite samples are determined by thermal desorption using a high-temperature furnace.Each mercury compound,such as HgCl2,has a specifc binding strength whose decomposition requires a certain thermal energy.Hence,the release of mercury from pure substances and lignite samples was analyzed in a high-temperature furnace.The released mercury is determined with a Mercury Vapor Monitor.The obtained characteristic temperature range and peak of the mercury release were compared between lignite samples and mercury pure substances.For the lignite samples investigated,the binding form of mercury was then identifed as Humic Acid.These organic compounds vaporize at lower temperatures.About half of the mercury bound in the lignite was already released at 350℃.Furthermore,the question arises whether mercury is already released during the grinding-drying process in the coal mill of a power plant.At two power plants,lignite samples were taken simultaneously at the feeder before entering the coal mill and at the dust line afterwards.The samples were analyzed for mercury concentration.The results show that up to one third of the mercury was already released in the coal mill.The vaporized mercury enters the combustion chamber detached from the lignite.The stated analysis methods and the results presented in this article contribute to the understanding of the mercury binding forms in lignite.It also shows the potential of thermal coal pretreatment as a favorable alternative mercury separation technology to others such as activated carbon dosing.展开更多
This paper describes for the first time the extraction followed by thermal desorption of polycyclic aromatic hydrocarbons (PAHs) spiked water samples in a microfluidic silicon device. Thanks to the integration into an...This paper describes for the first time the extraction followed by thermal desorption of polycyclic aromatic hydrocarbons (PAHs) spiked water samples in a microfluidic silicon device. Thanks to the integration into an original system composed of a micropump, microvalves, and an optimized thermal management, the entire protocol is automated and combines the extraction, the drying and the desorption in less than 25 min before sending the sample to a GC-FID system. Repeatable recovery yields have been determined for 1 μg/L spiked water samples and the analysis of PAHs in a natural water spiked sample has been demonstrated without loss of performance compared to purified water samples. Compared to other extraction techniques, this system has the advantage of reduced footprint, reduced energy consumption and no solvent use.展开更多
Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling,the quantum confinement,and surface effect.It was...Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling,the quantum confinement,and surface effect.It was reported that the ultrathin Sb nanofilms can undergo a series of topological transitions as a function of the film thickness h:from a topological semimetal(h>7.8 nm)to a topological insulator(7.8 nm>h>2.7 nm),then a quantum spin Hall(QSH)phase(2.7 nm>h>1.0 nm)and a topological trivial semiconductor(h<1.0 nm).Here,we report a comprehensive investigation on the epitaxial growth of Sb nanofilms on highly oriented pyrolytic graphite(HOPG)substrate and the controllable thermal desorption to achieve their specific thickness.The morphology,thickness,atomic structure,and thermal-strain effect of the Sb nanofilms were characterized by a combination study of scanning electron microscopy(SEM),atomic force microscopy(AFM),and scanning tunneling microscopy(STM).The realization of Sb nanofilms with specific thickness paves the way for the further exploring their thickness-dependent topological phase transitions and exotic physical properties.展开更多
The study is on the use of thermal desorption unit in the remediation of contaminated soils located at Beneku in Ndokwa East local government area of Delta state. This method uses heat to vaporize the contaminants, an...The study is on the use of thermal desorption unit in the remediation of contaminated soils located at Beneku in Ndokwa East local government area of Delta state. This method uses heat to vaporize the contaminants, and as such only works for volatile contaminants. Air quality samples around the thermal desorption Unit (TDU), used for the treatment of hydrocarbon impacted soils were taken at six (6) different sampling points (Stations). The sampling points were 100 m apart beginning from 0 m which was the closest to the TDU. The results showed that the mean values of SO<sub>2</sub> were 0.01 ppm for both the dry and wet seasons and it is within the FMEnv limit of 0.01. The mean concentration of NO<sub>2</sub> in the dry season was 0.25 μg/m<sup>3</sup> and in the wet season it was 0.18 μg/m<sup>3</sup>, which were above the FMEnv limit of 0.06 μg/m<sup>3</sup>. It is a strong oxidizing agent that reacts with air/water to form corrosive nitric acid, as well as toxic organic nitrates. The mean concentration of CO<sub>2</sub> recorded in the dry season was 11.52 ppm and that for the wet season was 10.53 ppm, which were slightly above the FMEnv limit of 10.00 ppm. The levels of SPM 2.5 recorded in the study show a concentration of 132.07 μg/m<sup>3</sup> in the dry season and 95.93 μg/m<sup>3</sup> in the wet season while those for SPM 10 had 102.17 μg/m<sup>3</sup> in the dry season and 91.33 μg/m<sup>3</sup> in the wet season. The level of the VOC recorded across the study area was significantly low (0.11 μg/m<sup>3</sup>). The mean H<sub>2</sub>S concentration recorded across the study area was low (0.01 μg/m<sup>3</sup>). Several health risks have been associated with SPM. Inhaling SPM affects respiratory and cardiovascular systems in both children and adults. Fine SPM (such as PM 2.5 particulate) can penetrate into the lungs and blood streams when inhaled, resulting to respiratory problems, heart attack, lung cancer and even death, while exposure to low levels of H<sub>2</sub>S can induce headaches as well as breathing difficulties in some asthmatic patients.展开更多
Vanadium alloys are considered as the promising first wall and structure materials of the future fusion reactors owing to their perfect low neutron-induced radioactivity and good high temperature performance. Helium r...Vanadium alloys are considered as the promising first wall and structure materials of the future fusion reactors owing to their perfect low neutron-induced radioactivity and good high temperature performance. Helium retention and thermal desorption behaviors are key issues for the applications of vanadium alloys in fusion reactors since helium can be produced by helium discharge cleaning and neutron transmutation. A. van Veen groupt investigated helium trapping and thermal desorption mechanisms in vanadium alloys by using 1 keV helium ion irradiation to the fluence of 10^13~10^14He/cm^2, and the influenee of pre-annealing treatments on helium trapping. Two group of peaks were found at the thermal helium desorption spectrum. They thought one was due to helium-vacancyimpurity clusters and the other was corresponding to helium trapping into pre-existing traps, such as fine-size precipitates.展开更多
基金This work was part of the project“Research and Development of Nutrition and Health Processing for Halal Beef and Muttons”,and was financially supported by Ningxia Hui Autonomous Region Technology R&D Support Program as well as the“13th Five-Year Plan”(No.2016YFD0400703)of National Key Research and Development Program of China.
文摘In the present study,flavor profiles of Chinese spiced beef in the cooking process were comparatively analyzed by electronic nose,gas chromatography–mass spectrometry(GC–MS)with a thermal desorption system(TDS),and solid-phase microextraction(SPME).A total of 82 volatile compounds were identified,and 3-methyl-butanal,pentanal,hexanal,-xylene,heptanal,limonene,terpinene,octanal,linalool,4-terpinenol,-terpineol,and(E)-anethole were identified as the characteristic flavor compounds in Chinese spiced beef.Variation in the content of volatile components produced by different cooking processes was observed.In general,a cooking time of 4 h resulted in optimal flavor quality and stability.Results indicated that the electronic nose could profile and rapidly distinguish variation among different cooking time.The volatile profiling by TDS-GC–MS and responses from the electronic nose,in combination with multivariate statistical analysis,are a promising tool for control the cooking process of spiced beef.
文摘The multi-walled carbon nanotubes(MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition(CCVD) process, and were thermally annealed by the hot filament plasma enhanced(HF PE) method at 550℃ for two hours.The x-ray absorption near edge structure(XANES) technique was used to investigate the adsorption and desorption phenomena of the MWCNTs at normal and grazing incidence angles.The adsorbates were found to have different sensitivities to the thermal annealing.The geometry of the incident beam consistently gave information about the adsorption and desorption phenomena.In addition, the adsorption of non-intrinsic potassium quantitatively affected the intrinsic adsorbates and contributed to increase the conductivity of the MWCNTs.The desorption of potassium was almost 70% greater after the thermal annealing.The potassium non-intrinsic adsorbates are from a physisorption mechanism whereas the intrinsic adsorbates result from chemisorption.
基金Project supported by Special Funds for Fundamental Research Funds for Central Universities,China(Grant Nos.2018 NTST29 and 2018 NTST04)the National Natural Science Foundation of China(Grant No.61176003)+1 种基金Chinese Postdoctoral Science Foundation(Grant No.2019M650524)Guangdong Province Key Area R&D Program,China(Grant No.2019B090909002)。
文摘The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV and 180 keV were introduced by ion implantation to a certain dose(peak displacement damage 1-10 dpa).Then thermal desorption spectroscopy(TDS)of helium atoms was performed to discuss the helium desorption characteristic and trapping sites.The desorption peaks shift to a lower temperature with increasing dpa for both 80 keV and 180 keV irradiation,reflecting the reduced diffusion activation energy and faster diffusion within the alloy.The main release peak temperature of 180 keV helium injection is relatively higher than that of 80 keV at the same influence,which is because the irradiation damage of 180 keV,helium formation and entrapment occur deeper.The broadening of the spectra corresponds to different helium trapping sites(He-vacancies,grain boundary)and desorption mechanisms(different Hen Vm size).The helium retention amount of 80 keV is lower than that of 180 keV,and a saturation limit associated with the irradiation of 80 keV has been reached.The relatively low helium retention proves the better resistance to helium bubbles formation and helium brittleness.
文摘In this article,the binding forms of two lignite samples are determined by thermal desorption using a high-temperature furnace.Each mercury compound,such as HgCl2,has a specifc binding strength whose decomposition requires a certain thermal energy.Hence,the release of mercury from pure substances and lignite samples was analyzed in a high-temperature furnace.The released mercury is determined with a Mercury Vapor Monitor.The obtained characteristic temperature range and peak of the mercury release were compared between lignite samples and mercury pure substances.For the lignite samples investigated,the binding form of mercury was then identifed as Humic Acid.These organic compounds vaporize at lower temperatures.About half of the mercury bound in the lignite was already released at 350℃.Furthermore,the question arises whether mercury is already released during the grinding-drying process in the coal mill of a power plant.At two power plants,lignite samples were taken simultaneously at the feeder before entering the coal mill and at the dust line afterwards.The samples were analyzed for mercury concentration.The results show that up to one third of the mercury was already released in the coal mill.The vaporized mercury enters the combustion chamber detached from the lignite.The stated analysis methods and the results presented in this article contribute to the understanding of the mercury binding forms in lignite.It also shows the potential of thermal coal pretreatment as a favorable alternative mercury separation technology to others such as activated carbon dosing.
文摘This paper describes for the first time the extraction followed by thermal desorption of polycyclic aromatic hydrocarbons (PAHs) spiked water samples in a microfluidic silicon device. Thanks to the integration into an original system composed of a micropump, microvalves, and an optimized thermal management, the entire protocol is automated and combines the extraction, the drying and the desorption in less than 25 min before sending the sample to a GC-FID system. Repeatable recovery yields have been determined for 1 μg/L spiked water samples and the analysis of PAHs in a natural water spiked sample has been demonstrated without loss of performance compared to purified water samples. Compared to other extraction techniques, this system has the advantage of reduced footprint, reduced energy consumption and no solvent use.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21622304,61674045,11604063,and 61911540074)the National Key Research and Development Program of China(Grant No.2016YFA0200700)+2 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences and Instrument Developing Project(Chinese Academy of Sciences,CAS)(Grant Nos.XDB30000000,QYZDB-SSW-SYS031,and YZ201418)Z.H.Cheng was supported by Distinguished Technical Talents Project and Youth Innovation Promotion Association CAS,the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.18XNLG01).
文摘Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling,the quantum confinement,and surface effect.It was reported that the ultrathin Sb nanofilms can undergo a series of topological transitions as a function of the film thickness h:from a topological semimetal(h>7.8 nm)to a topological insulator(7.8 nm>h>2.7 nm),then a quantum spin Hall(QSH)phase(2.7 nm>h>1.0 nm)and a topological trivial semiconductor(h<1.0 nm).Here,we report a comprehensive investigation on the epitaxial growth of Sb nanofilms on highly oriented pyrolytic graphite(HOPG)substrate and the controllable thermal desorption to achieve their specific thickness.The morphology,thickness,atomic structure,and thermal-strain effect of the Sb nanofilms were characterized by a combination study of scanning electron microscopy(SEM),atomic force microscopy(AFM),and scanning tunneling microscopy(STM).The realization of Sb nanofilms with specific thickness paves the way for the further exploring their thickness-dependent topological phase transitions and exotic physical properties.
文摘The study is on the use of thermal desorption unit in the remediation of contaminated soils located at Beneku in Ndokwa East local government area of Delta state. This method uses heat to vaporize the contaminants, and as such only works for volatile contaminants. Air quality samples around the thermal desorption Unit (TDU), used for the treatment of hydrocarbon impacted soils were taken at six (6) different sampling points (Stations). The sampling points were 100 m apart beginning from 0 m which was the closest to the TDU. The results showed that the mean values of SO<sub>2</sub> were 0.01 ppm for both the dry and wet seasons and it is within the FMEnv limit of 0.01. The mean concentration of NO<sub>2</sub> in the dry season was 0.25 μg/m<sup>3</sup> and in the wet season it was 0.18 μg/m<sup>3</sup>, which were above the FMEnv limit of 0.06 μg/m<sup>3</sup>. It is a strong oxidizing agent that reacts with air/water to form corrosive nitric acid, as well as toxic organic nitrates. The mean concentration of CO<sub>2</sub> recorded in the dry season was 11.52 ppm and that for the wet season was 10.53 ppm, which were slightly above the FMEnv limit of 10.00 ppm. The levels of SPM 2.5 recorded in the study show a concentration of 132.07 μg/m<sup>3</sup> in the dry season and 95.93 μg/m<sup>3</sup> in the wet season while those for SPM 10 had 102.17 μg/m<sup>3</sup> in the dry season and 91.33 μg/m<sup>3</sup> in the wet season. The level of the VOC recorded across the study area was significantly low (0.11 μg/m<sup>3</sup>). The mean H<sub>2</sub>S concentration recorded across the study area was low (0.01 μg/m<sup>3</sup>). Several health risks have been associated with SPM. Inhaling SPM affects respiratory and cardiovascular systems in both children and adults. Fine SPM (such as PM 2.5 particulate) can penetrate into the lungs and blood streams when inhaled, resulting to respiratory problems, heart attack, lung cancer and even death, while exposure to low levels of H<sub>2</sub>S can induce headaches as well as breathing difficulties in some asthmatic patients.
文摘Vanadium alloys are considered as the promising first wall and structure materials of the future fusion reactors owing to their perfect low neutron-induced radioactivity and good high temperature performance. Helium retention and thermal desorption behaviors are key issues for the applications of vanadium alloys in fusion reactors since helium can be produced by helium discharge cleaning and neutron transmutation. A. van Veen groupt investigated helium trapping and thermal desorption mechanisms in vanadium alloys by using 1 keV helium ion irradiation to the fluence of 10^13~10^14He/cm^2, and the influenee of pre-annealing treatments on helium trapping. Two group of peaks were found at the thermal helium desorption spectrum. They thought one was due to helium-vacancyimpurity clusters and the other was corresponding to helium trapping into pre-existing traps, such as fine-size precipitates.