One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions d...One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2(Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows:(1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period,while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement.(2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold(4.17 e V) is too high for thermal electrons.(3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode(extraordinary mode) suppression of 630.0 nm airglow during O-mode(ordinary mode) enhancement.展开更多
Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-a...Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-acoustic waves in e-p-i plasma with non-thermal electrons has not been adequately studied. A theoretical investigation on non-linear IAS waves in e-p-i plasma comprising of warm inertial adiabatic fluid ions and electrons that are kappa distributed, and Boltzman distributed positron is presented here using the Sagdeev potential technique. It was found that existence domains of finite amplitude IAS waves were confined within the limits of minimum and maximum Mach numbers with varying k values. For lower values of k, the amplitude of the solitary electrostatic potential structures increased as the width decreased, while for high values, the potential amplitude decreased as the width of the solitary structure increased.展开更多
In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first...In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community.展开更多
A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM...A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
In this paper, the out-of-plane deformation of silicon surface of Direct Chip Attachment (DCA) assembly, under thermal loading, was measured in real-time by Twyman/Green interferometry. The contour maps of the out-of-...In this paper, the out-of-plane deformation of silicon surface of Direct Chip Attachment (DCA) assembly, under thermal loading, was measured in real-time by Twyman/Green interferometry. The contour maps of the out-of-plane displacement fields of silicon surface under thermal loading and cycling of various temperature were obtained, Experimental results show that the relation between the out-of-plane displacement and temperature is nonlinear and varies with temperature cycling, due to nonlinear mechanical behavior of the materials used in electronic packaging. A comparison of the aut-of-plane displacement Gelds of silicon surface measured by T/G interferometry in real-time and replicating technique of high temperature specimen grating of moire interferometry was made.展开更多
A comprehensive investigation was made on the electronic structure, thermal expansion coefficient and light absorption spectrum of total six transition metal dichalcogenides(TMDs) compounds with formula of MX_2(M=Mo, ...A comprehensive investigation was made on the electronic structure, thermal expansion coefficient and light absorption spectrum of total six transition metal dichalcogenides(TMDs) compounds with formula of MX_2(M=Mo, W, Cr, X=S, Se). First, an indirect-direct band gap transition from bulk to singlelayer was declared for all the six compounds. Moreover, the detailed lattice constants and thermal expansion coefficients provided in the paper were the key information for designing MX_2-based field effect transistors. Finally, the calculated optical absorption spectra demonstrate that these compounds can effectively utilize solar energy and are good photo catalyst candidates. All these present findings will benefit the design of new generation of novel two-dimensional materials.展开更多
Siliconization is a normal method for the first-wall conditioning on the HT-7 toka-mak. After siliconization the total radiation loss is reduced significantly. Heat-diffusion coefficient the electron of is reduced obv...Siliconization is a normal method for the first-wall conditioning on the HT-7 toka-mak. After siliconization the total radiation loss is reduced significantly. Heat-diffusion coefficient the electron of is reduced obviously at the outer half radius (r/a > 0.5) after siliconization. And the plasma confinement is improved effectively. At the core of the plasma, electromagnetic drift-wave mode driven by the temperature gradient of electron gives a good representation of the experimental data not only before siliconization but also after siliconization. But at the outer half radius, the Parail's electromagnetic drift-wave even mode gives a good description of the experimental data before siliconization, and the experimental data of Xe is close to the collisionless electrostatic drift-wave mode turbulence after siliconization.展开更多
The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The ground...The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.展开更多
The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3w. laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electr...The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3w. laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Harm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.展开更多
High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important t...High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM)is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA)steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels.展开更多
Ceramic materials were investigated as thermal barrier coatings and electrolytes. Electrophoretic deposition(EPD) and physical vapor deposition(PVD) were employed to fabricate samples, and the mechanical propertie...Ceramic materials were investigated as thermal barrier coatings and electrolytes. Electrophoretic deposition(EPD) and physical vapor deposition(PVD) were employed to fabricate samples, and the mechanical properties and microstructure were examined by nanoindentation and microscopy, respectively. Yttria-stabilized zirconia/alumina(YSZ/Al2O3) composite coatings, a candidate for thermal barrier coatings, yield a kinky, rather than smooth, load–displacement curve. Scanning electron microscope(SEM) examination reveals that the kinky curve is because of the porous microstructure and cracks are caused by the compression of the indenter. Li0.34La0.51 Ti O2.94(LLTO) on Si/Sr Ru O3(Si/SRO) substrates, an ionic conductor in nature, demonstrates electronic performance. Although SEM images show a continuous and smooth microstructure, a close examination of the microstructure by transmission electron microscopy(TEM) reveals that the observed spikes indicate electronic performance. Therefore, we can conclude that ceramic coatings could serve multiple purposes but their properties are microstructure-dependent.展开更多
Stretchable electronics, which offers the performance of conventional wafer-based devices and mechan- ical properties of a rubber band, enables many novel applications that are not possible through conven- tional elec...Stretchable electronics, which offers the performance of conventional wafer-based devices and mechan- ical properties of a rubber band, enables many novel applications that are not possible through conven- tional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1-2℃ temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.展开更多
First-principles calculations have been carried out to investigate the effects of alloying elements(Zn, Li, Y and Sc) on the electronic structure, elastic and thermal properties of Mg solid solution. The calculated ...First-principles calculations have been carried out to investigate the effects of alloying elements(Zn, Li, Y and Sc) on the electronic structure, elastic and thermal properties of Mg solid solution. The calculated cohesive energies show that Mg-Sc has the highest structural stability. The calculations of the densities of states(DOS) and electronic charge density difference indicate that Mg-Y(Sc) alloys have very strong covalent bonding due to a very strong Mg p-Y(Sc) d hybridization. The bulk modulus B, shear modulus G, Young's modulus E and Poisson ratio ν are derived using Voigt-Reuss-Hill(VRH) approximation. The results show that all the alloys can exhibit ductile properties at 2.77 at% R, and Mg-Zn(Li) alloys have the better ductility and plasticity. In the end, the Debye temperature and isochoric heat capacity are also calculated and discussed.展开更多
Using the first-principles method, we predict an orthorhombic boron–carbon binary structure with sp^ace group Imm2.This structure is verified to be dynamically and mechanically stable, and possesses a cavity of 27.5 ...Using the first-principles method, we predict an orthorhombic boron–carbon binary structure with sp^ace group Imm2.This structure is verified to be dynamically and mechanically stable, and possesses a cavity of 27.5 ~2 that makes it a potential molecular sieve material. The C sp^2 and sp^3 hybridized bonding in Imm2 BC is an important factor for its structural stability. The energy band calculations reveal that Imm2 BC is a semiconductor with a band gap of 1.3 eV and has a promising application in the electro-optic field. The lattice thermal conductivity along the crystal [100] direction at room temperature is 186 W·m^(-1)·K^(-1), that is about 5 times higher than those along the [010] and [001] directions, which stems from the different group velocity along the crystal direction. Moreover, the acoustic-optical coupling is important for heat transp^ort in Imm2 BC, and the contribution of optical phonons to lattice thermal conductivity in the [100], [010], and [001]directions is 49%, 59%, and 61%, resp^ectively. This study gives a fundamental understanding of the structural, electronic,elastic, and heat transp^ort properties in Imm2 BC, further enriching the family of boron–carbon binary compounds.展开更多
Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron ph...Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.展开更多
New method of thermal energy—to electrical energy conversion in vacuum devices with the metal (W)—dielectric nanofilm (ZrO2) electron source is offered and studied. According to estimates and results of modeling, th...New method of thermal energy—to electrical energy conversion in vacuum devices with the metal (W)—dielectric nanofilm (ZrO2) electron source is offered and studied. According to estimates and results of modeling, the energy effectiveness (χ) of the proposed method may exceed χ for the known thermionic energy conversion method to 2 - 3 orders of magnitude.展开更多
The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device ...The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device damage.With the development of micro-machining technologies,the microchannel heat sink(MCHS)has become one of the best ways to remove the considerable amount of heat generated by high-power electronics.It has the advantages of large specific surface area,small size,coolant saving and high heat transfer coefficient.This paper comprehensively takes an overview of the research progress in MCHSs and generalizes the hotspots and bottlenecks of this area.The heat transfer mechanisms and performances of different channel structures,coolants,channel materials and some other influencing factors are reviewed.Additionally,this paper classifies the heat transfer enhancement technology and reviews the related studies on both the single-phase and phase-change flow and heat transfer.The comprehensive review is expected to provide a theoretical reference and technical guidance for further research and application of MCHSs in the future.展开更多
Moiré inteferometry and FEA (finite element analysis) were used to evaluate the thermal deformation of two electronic packages, QFP (quad flat package) and MCM (multi chip module).Thermal loading was applied by c...Moiré inteferometry and FEA (finite element analysis) were used to evaluate the thermal deformation of two electronic packages, QFP (quad flat package) and MCM (multi chip module).Thermal loading was applied by cooling the packages from 100℃ to room temperature (25℃). Moiré fringes were obtained on the cross sections of the packages to clarify the effect of the CTE (coefficient of thermal expansion) mismatch of the micro components, such as silicon, metal and resin. In QFP, the effects of packaging resin and PCB (printed circuit board) on the thermal deformation were investigated. The effect of location of three silicon chips in MCM was also examined.展开更多
We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quan...We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quantum, levels are blurred.展开更多
基金supported by the National Natural Science Foundation of China(41325017,41274158,41274157,and 41421063)the fundamental research funds for the central universitiesThousand Young Talents Program of China
文摘One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2(Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows:(1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period,while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement.(2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold(4.17 e V) is too high for thermal electrons.(3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode(extraordinary mode) suppression of 630.0 nm airglow during O-mode(ordinary mode) enhancement.
文摘Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-acoustic waves in e-p-i plasma with non-thermal electrons has not been adequately studied. A theoretical investigation on non-linear IAS waves in e-p-i plasma comprising of warm inertial adiabatic fluid ions and electrons that are kappa distributed, and Boltzman distributed positron is presented here using the Sagdeev potential technique. It was found that existence domains of finite amplitude IAS waves were confined within the limits of minimum and maximum Mach numbers with varying k values. For lower values of k, the amplitude of the solitary electrostatic potential structures increased as the width decreased, while for high values, the potential amplitude decreased as the width of the solitary structure increased.
文摘In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community.
文摘A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
文摘In this paper, the out-of-plane deformation of silicon surface of Direct Chip Attachment (DCA) assembly, under thermal loading, was measured in real-time by Twyman/Green interferometry. The contour maps of the out-of-plane displacement fields of silicon surface under thermal loading and cycling of various temperature were obtained, Experimental results show that the relation between the out-of-plane displacement and temperature is nonlinear and varies with temperature cycling, due to nonlinear mechanical behavior of the materials used in electronic packaging. A comparison of the aut-of-plane displacement Gelds of silicon surface measured by T/G interferometry in real-time and replicating technique of high temperature specimen grating of moire interferometry was made.
基金Funded by and the Science Research Foundation of Liaoning Province(20180550955)the National Natural Science Foundation of China(No.11547115)
文摘A comprehensive investigation was made on the electronic structure, thermal expansion coefficient and light absorption spectrum of total six transition metal dichalcogenides(TMDs) compounds with formula of MX_2(M=Mo, W, Cr, X=S, Se). First, an indirect-direct band gap transition from bulk to singlelayer was declared for all the six compounds. Moreover, the detailed lattice constants and thermal expansion coefficients provided in the paper were the key information for designing MX_2-based field effect transistors. Finally, the calculated optical absorption spectra demonstrate that these compounds can effectively utilize solar energy and are good photo catalyst candidates. All these present findings will benefit the design of new generation of novel two-dimensional materials.
基金The project supported by the Meg-Science Engineering Project of the Chinese Academy of Sciences
文摘Siliconization is a normal method for the first-wall conditioning on the HT-7 toka-mak. After siliconization the total radiation loss is reduced significantly. Heat-diffusion coefficient the electron of is reduced obviously at the outer half radius (r/a > 0.5) after siliconization. And the plasma confinement is improved effectively. At the core of the plasma, electromagnetic drift-wave mode driven by the temperature gradient of electron gives a good representation of the experimental data not only before siliconization but also after siliconization. But at the outer half radius, the Parail's electromagnetic drift-wave even mode gives a good description of the experimental data before siliconization, and the experimental data of Xe is close to the collisionless electrostatic drift-wave mode turbulence after siliconization.
文摘The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.
基金the National High-Tech ICF Committee in Chinathe National Natute Science Foundation of China !(No.19735002)the Fund of C
文摘The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3w. laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Harm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.
基金Supported by Startup Fund for Youngman Research at SJTU(SFYR at SJTU)National Basic Research Program of China(Grant No.2011CB012904)China Postdoctoral Science Foundation(Grant No.2013M541517)
文摘High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM)is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA)steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels.
基金financially supported by the Natural Science Foundation of Hebei Province,China(No.E2013502272)
文摘Ceramic materials were investigated as thermal barrier coatings and electrolytes. Electrophoretic deposition(EPD) and physical vapor deposition(PVD) were employed to fabricate samples, and the mechanical properties and microstructure were examined by nanoindentation and microscopy, respectively. Yttria-stabilized zirconia/alumina(YSZ/Al2O3) composite coatings, a candidate for thermal barrier coatings, yield a kinky, rather than smooth, load–displacement curve. Scanning electron microscope(SEM) examination reveals that the kinky curve is because of the porous microstructure and cracks are caused by the compression of the indenter. Li0.34La0.51 Ti O2.94(LLTO) on Si/Sr Ru O3(Si/SRO) substrates, an ionic conductor in nature, demonstrates electronic performance. Although SEM images show a continuous and smooth microstructure, a close examination of the microstructure by transmission electron microscopy(TEM) reveals that the observed spikes indicate electronic performance. Therefore, we can conclude that ceramic coatings could serve multiple purposes but their properties are microstructure-dependent.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR15A020001)the National Natural Science Foundation of China(Grant Nos.11502009,11372272 and 11321202)the National Basic Research Program of China(Grant No.2015CB351900)
文摘Stretchable electronics, which offers the performance of conventional wafer-based devices and mechan- ical properties of a rubber band, enables many novel applications that are not possible through conven- tional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1-2℃ temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.
基金Funded by the National Natural Science Foundation of China(Nos.51574206,51204147 and 51274175)International Cooperation Project Supported by Ministry of Science and Technology of China(No.2014DFA50320)International Cooperation Project Supported by Shanxi Province(Nos.2013081017,2012081013)
文摘First-principles calculations have been carried out to investigate the effects of alloying elements(Zn, Li, Y and Sc) on the electronic structure, elastic and thermal properties of Mg solid solution. The calculated cohesive energies show that Mg-Sc has the highest structural stability. The calculations of the densities of states(DOS) and electronic charge density difference indicate that Mg-Y(Sc) alloys have very strong covalent bonding due to a very strong Mg p-Y(Sc) d hybridization. The bulk modulus B, shear modulus G, Young's modulus E and Poisson ratio ν are derived using Voigt-Reuss-Hill(VRH) approximation. The results show that all the alloys can exhibit ductile properties at 2.77 at% R, and Mg-Zn(Li) alloys have the better ductility and plasticity. In the end, the Debye temperature and isochoric heat capacity are also calculated and discussed.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632900)the Science and Technology Planning Project of Sichuan Province,China(Grant Nos.2018JY0422 and 2018JY0325)+1 种基金the Department of Education of Sichuan Province,China(Grant No.18ZA0290)the Doctor Research Start-up Foundation of Panzhihua University,China(Grant No.0210600049)
文摘Using the first-principles method, we predict an orthorhombic boron–carbon binary structure with sp^ace group Imm2.This structure is verified to be dynamically and mechanically stable, and possesses a cavity of 27.5 ~2 that makes it a potential molecular sieve material. The C sp^2 and sp^3 hybridized bonding in Imm2 BC is an important factor for its structural stability. The energy band calculations reveal that Imm2 BC is a semiconductor with a band gap of 1.3 eV and has a promising application in the electro-optic field. The lattice thermal conductivity along the crystal [100] direction at room temperature is 186 W·m^(-1)·K^(-1), that is about 5 times higher than those along the [010] and [001] directions, which stems from the different group velocity along the crystal direction. Moreover, the acoustic-optical coupling is important for heat transp^ort in Imm2 BC, and the contribution of optical phonons to lattice thermal conductivity in the [100], [010], and [001]directions is 49%, 59%, and 61%, resp^ectively. This study gives a fundamental understanding of the structural, electronic,elastic, and heat transp^ort properties in Imm2 BC, further enriching the family of boron–carbon binary compounds.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50730006,50976053,and 50906042)
文摘Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.
文摘New method of thermal energy—to electrical energy conversion in vacuum devices with the metal (W)—dielectric nanofilm (ZrO2) electron source is offered and studied. According to estimates and results of modeling, the energy effectiveness (χ) of the proposed method may exceed χ for the known thermionic energy conversion method to 2 - 3 orders of magnitude.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20301,51825601)。
文摘The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device damage.With the development of micro-machining technologies,the microchannel heat sink(MCHS)has become one of the best ways to remove the considerable amount of heat generated by high-power electronics.It has the advantages of large specific surface area,small size,coolant saving and high heat transfer coefficient.This paper comprehensively takes an overview of the research progress in MCHSs and generalizes the hotspots and bottlenecks of this area.The heat transfer mechanisms and performances of different channel structures,coolants,channel materials and some other influencing factors are reviewed.Additionally,this paper classifies the heat transfer enhancement technology and reviews the related studies on both the single-phase and phase-change flow and heat transfer.The comprehensive review is expected to provide a theoretical reference and technical guidance for further research and application of MCHSs in the future.
文摘Moiré inteferometry and FEA (finite element analysis) were used to evaluate the thermal deformation of two electronic packages, QFP (quad flat package) and MCM (multi chip module).Thermal loading was applied by cooling the packages from 100℃ to room temperature (25℃). Moiré fringes were obtained on the cross sections of the packages to clarify the effect of the CTE (coefficient of thermal expansion) mismatch of the micro components, such as silicon, metal and resin. In QFP, the effects of packaging resin and PCB (printed circuit board) on the thermal deformation were investigated. The effect of location of three silicon chips in MCM was also examined.
文摘We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quantum, levels are blurred.