To improve the problem of low temperature at night in winter due to the lack of thermal storage in large-span plastic tunnels,an air thermal energy utilization system(ATEUS)was developed with fan-coil units to heat a ...To improve the problem of low temperature at night in winter due to the lack of thermal storage in large-span plastic tunnels,an air thermal energy utilization system(ATEUS)was developed with fan-coil units to heat a large-scale plastic tunnel covered with an external blanket(LPTEB)on winter nights.The ATEUS was composed of nine fan-coil units mounted on top of the LPTEB,a water reservoir,pipes,and a water circulation pump.With the heat exchange between the air and the water flowing through the coils,the thermal energy from the air can be collected in the daytime,or the thermal energy in the water can be released into the LPTEB at night.On sunny days,the collected thermal energy from the air in the daytime(E_(c))and released thermal energy at night(E_(r))were 0.25-0.44 MJ/m^(2) and 0.24-0.38 MJ/m^(2),respectively.Used ATEUS as a heating system,its coefficient of performance(COP),which is the ratio of the heat consumption of LPTEB to the power consumption of ATEUS,ranged from 1.6-2.1.A dynamic model was also developed to simulate the water temperature(T_(w)).Based on the simulation,E_(c) and E_(r) on sunny days can be increased by 60%-73%and 38%-62%,respectively,by diminishing the heat loss of the water reservoir and increasing the indoor air temperature in the period of collecting thermal energy.Then,the COP can reach 2.6-3.8,and the developed ATEUS can be applied to heating the LPTEB in a way that conserves energy.展开更多
Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distribu...Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distributed solar refrigeration system, comprising an evacuated U-tube solar collector and elastocaloric refrigerator, is theoretically introduced. Theoretical formulations for the energy efficiency and cooling power of the solar refrigeration system are presented to facilitate predictive assessments of the performance properties. Under typical conditions, the energy efficiency and cooling power of the solar refrigeration system are,respectively, 4.84% and 200.15 W. Subsequently, an extensive parameter study is conducted to comprehensively uncover key performance influencers and identify avenues for improvement. In addition, local sensitivity analyses identify that the length ratio is the top influential parameter, while the heat transfer fluid flow rate is the least sensitivity. A pragmatic case study,conducted with the weather data of Ningbo City, China, serves to empirically predict the performance of the hybrid system within the constraints of practical circumstances.展开更多
基金financially supported by China Agriculture Research System of MOF and MARA(Grant No.CARS-23-D02)the Key Research and Development Plan,Science Technology Department of Zhejiang Province(Grant No.2019C02009).
文摘To improve the problem of low temperature at night in winter due to the lack of thermal storage in large-span plastic tunnels,an air thermal energy utilization system(ATEUS)was developed with fan-coil units to heat a large-scale plastic tunnel covered with an external blanket(LPTEB)on winter nights.The ATEUS was composed of nine fan-coil units mounted on top of the LPTEB,a water reservoir,pipes,and a water circulation pump.With the heat exchange between the air and the water flowing through the coils,the thermal energy from the air can be collected in the daytime,or the thermal energy in the water can be released into the LPTEB at night.On sunny days,the collected thermal energy from the air in the daytime(E_(c))and released thermal energy at night(E_(r))were 0.25-0.44 MJ/m^(2) and 0.24-0.38 MJ/m^(2),respectively.Used ATEUS as a heating system,its coefficient of performance(COP),which is the ratio of the heat consumption of LPTEB to the power consumption of ATEUS,ranged from 1.6-2.1.A dynamic model was also developed to simulate the water temperature(T_(w)).Based on the simulation,E_(c) and E_(r) on sunny days can be increased by 60%-73%and 38%-62%,respectively,by diminishing the heat loss of the water reservoir and increasing the indoor air temperature in the period of collecting thermal energy.Then,the COP can reach 2.6-3.8,and the developed ATEUS can be applied to heating the LPTEB in a way that conserves energy.
基金supported by the Baima Lake Laboratory Joint Funds of the Zhejiang Natural Science Foundation of China(Grant No.LBMHY24E060010)。
文摘Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distributed solar refrigeration system, comprising an evacuated U-tube solar collector and elastocaloric refrigerator, is theoretically introduced. Theoretical formulations for the energy efficiency and cooling power of the solar refrigeration system are presented to facilitate predictive assessments of the performance properties. Under typical conditions, the energy efficiency and cooling power of the solar refrigeration system are,respectively, 4.84% and 200.15 W. Subsequently, an extensive parameter study is conducted to comprehensively uncover key performance influencers and identify avenues for improvement. In addition, local sensitivity analyses identify that the length ratio is the top influential parameter, while the heat transfer fluid flow rate is the least sensitivity. A pragmatic case study,conducted with the weather data of Ningbo City, China, serves to empirically predict the performance of the hybrid system within the constraints of practical circumstances.