Like the progress made by Dirac that wave function ψ(x) was reformed as x |ψ,where x| is the coordinate representation,we endow the characteristic function χλ = Tr(e λa-λaρ) of density operator ρ with the mean...Like the progress made by Dirac that wave function ψ(x) was reformed as x |ψ,where x| is the coordinate representation,we endow the characteristic function χλ = Tr(e λa-λaρ) of density operator ρ with the meaning of wave function of |ρ in the thermal entangled state η| representation in the doubled Fock space,χλ = η = λ|ρ,where |ρ = ρ|η = 0.We find the time evolution of χλ can then be directly and neatly obtained via this approach.The way of deriving the density operator from η = λ | ρ is also presented.展开更多
This paper constructs a new type of finite-dimensional thermal coherent states (FDTCS), which differs from the proceeding thermal coherent state in construction, as realisations of SU(2) Lie algebra. Using the tec...This paper constructs a new type of finite-dimensional thermal coherent states (FDTCS), which differs from the proceeding thermal coherent state in construction, as realisations of SU(2) Lie algebra. Using the technique of integration within an ordered product of operator, it investigates the orthonormality and completeness relation of the FDTCS. Based on the thermal Wigner operator in the thermal entangled state representation, the Wigner function of the FDTCS is obtained. The nonclassical properties of the FDTCS are discussed in terms of the negativity of its Wigner function.展开更多
For the first time we derive the evolution law of the negative binomial state In) (nI in an ampli-tude dissipative channel with a damping constant to. We find that after passing through the channel, the final state ...For the first time we derive the evolution law of the negative binomial state In) (nI in an ampli-tude dissipative channel with a damping constant to. We find that after passing through the channel, the final state is still a negative binomial state, however the parameter γ evolves into The decay law of theaverage photon number is also obtained.展开更多
Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum ...Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation.We present a new evolution formula of the Wigner function(WF) for any initial state of the diffusive AHO by converting the WF calculation into an overlap between two pure states in an enlarged Fock space.It is found that this formula is very convenient in investigating the WF's evolution of any known initial state.As applications,this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of diffusive AHOs.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11175113)
文摘Like the progress made by Dirac that wave function ψ(x) was reformed as x |ψ,where x| is the coordinate representation,we endow the characteristic function χλ = Tr(e λa-λaρ) of density operator ρ with the meaning of wave function of |ρ in the thermal entangled state η| representation in the doubled Fock space,χλ = η = λ|ρ,where |ρ = ρ|η = 0.We find the time evolution of χλ can then be directly and neatly obtained via this approach.The way of deriving the density operator from η = λ | ρ is also presented.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574060)the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A23and ZR2010AQ027)the Shandong Province Higher Educational Science and Technology Program,China(Grant Nos.J09LA07and J10LA15).
文摘This paper constructs a new type of finite-dimensional thermal coherent states (FDTCS), which differs from the proceeding thermal coherent state in construction, as realisations of SU(2) Lie algebra. Using the technique of integration within an ordered product of operator, it investigates the orthonormality and completeness relation of the FDTCS. Based on the thermal Wigner operator in the thermal entangled state representation, the Wigner function of the FDTCS is obtained. The nonclassical properties of the FDTCS are discussed in terms of the negativity of its Wigner function.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175113 and 112470009)
文摘For the first time we derive the evolution law of the negative binomial state In) (nI in an ampli-tude dissipative channel with a damping constant to. We find that after passing through the channel, the final state is still a negative binomial state, however the parameter γ evolves into The decay law of theaverage photon number is also obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11147009 and 11244005)the Natural Science Foundation of Shandong Province,China (Grant No. ZR2012AM004)
文摘Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation.We present a new evolution formula of the Wigner function(WF) for any initial state of the diffusive AHO by converting the WF calculation into an overlap between two pure states in an enlarged Fock space.It is found that this formula is very convenient in investigating the WF's evolution of any known initial state.As applications,this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of diffusive AHOs.